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Abstract

The observed choices of a set of players interacting in various related games are
said to be Nash rationalizable if there exist preferences for the players that make those
choices the pure strategy Nash equilibria for each game. We provide an intuitive
characterization of Nash rationalizability under less restrictive conditions than those
in the existing literature, and show that this restricted Nash rationalizability problem
is computationally tractable. Then we show that the general Nash rationalizability
problem is NP-complete, i.e. it is considered computationally intractable. We use
results from descriptive complexity theory to explain the implications of our theorems
for revealed preference theory for games.
Nash equilibrium; Revealed preference; Complexity. JEL classifications: C72, D70.

1 Introduction

The importance of questions of computational complexity has been increasingly recognized
in the game theory literature (Halpern, 2008). Previous authors have examined the com-
plexity of computing Nash equilibria (e.g. Daskalakis et al., 2009), and the complexity of
mechanism design (e.g. Conitzer and Sandholm, 2002). The present paper contributes to
this growing literature by investigating the complexity of determining whether the observed
behavior of players can be described using the Nash equilibrium solution. That is, we study
the complexity of testing whether the choices of a group of players are Nash rationalizable
(see below for a formal definition).

Thus we also contribute to the literature on the testable implications of the Nash
equilibrium solution concept. In the theory of individual decision making, the revealed
preference literature asks questions of the form: “What conditions characterize choice be-
havior that is generated by maximization of a preference relation with certain properties?”
Starting with Samuelson (1938) and Houthakker (1950), answers to such questions have
been obtained in quite general settings (Richter, 1966, 1971, 1975). The analogous revealed
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preference questions in collective choice theory were addressed only recently.1 Yanovskaya
(1980) and Sprumont (2000) characterize joint choice behavior that is consistent with the
pure strategy Nash equilibrium solution for normal form games. Their conditions are very
similar to the “Consistency” and “Converse Consistency” conditions of Peleg and Tijs
(1996).

These existing results on the testable implications of Nash equilibrium assume that
observations are complete in a very strong sense. We relax these assumptions and provide
a characterization that is a straightforward extension of the revealed preference result of
Richter (1966) to a multi-agent setting.2 Our condition is plainly analogous with the strong
axiom of revealed preference. Even with our weakened assumptions on the structure of
observations, testing Nash rationalizability is a polynomial problem. Then we consider the
general problem of testing Nash rationalizability when no restrictions are imposed on the
structure of observations. We show that this problem is NP-complete even if there are only
two players.

Our result has important practical and theoretical implications. From an applied per-
spective, it is computationally difficult to determine whether agents involved in some inter-
action can be described as behaving noncooperatively, according to the Nash equilibrium
solution. To understand the relevance of our computational complexity result for the liter-
ature on the testable implications of Nash equilibrium, we turn to the notion of descriptive
complexity. Using known connections between computational complexity and descriptive
complexity, we show that the NP-completeness of the general Nash rationalizability prob-
lem means that there exists no attractive, general characterization of Nash rationalizability
analogous to the strong axiom of revealed preference. We believe that this paper is the
first to point out the relevance of descriptive complexity notions to the game theory or
economics literature.

2 Characterization of Nash rationalizability

In this section we formulate the testable implications question for Nash equilibrium, so
that in the next section we can consider the complexity of that problem. We also present a
simple characterization theorem that relaxes assumptions made in the previous literature.

We consider the testable implications of pure strategy Nash equilibrium, and so it is

1See Carvajal et al. (2004) for a survey. Yanovskaya (1980) and Sprumont (2000) are most closely
related to our work, because they formulate their questions for normal form games, as we do. A comple-
mentary literature (Ray and Zhou, 2001; Ray and Snyder, 2003) considers analogous questions for extensive
form games.

2In the context of extensive form games and subgame perfect Nash equilibrium, Ray and Zhou (2001)
also use a revealed preference approach and allow for infinite action sets. However, they impose the
“complete domain” assumption, and use a “subgame consistency” and an “internal consistency” condition
in addition to the revealed preference condition (“acyclicity of the revealed base relation”). Demuynck
and Lauwers (2009) consider Nash rationalizability with choices over lotteries, and independently obtain
a slightly different generalization of Richter’s Congruence Axiom. For a discussion of the relationship to
this paper, see (Demuynck and Lauwers, 2009, p. 12).
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natural to take choices of pure strategies (by all players) as the observed data. We suppose
that we observe a set of games played, and for each game we see the players, the game
form, as well as the chosen pure strategy of each player. Because we do not observe the
payoffs, we will say that we observe these players as they play game forms.3 Each observed
game form is considered a one-shot interaction, even though some players might encounter
each other in several game forms. In our analysis, the sequence in which the observed
game forms are played has therefore no significance. Though this is not a fully general
formulation of the problem, it has proven to be a useful starting point in the literature
(Sprumont, 2000).

Formally, we observe a finite set I of players play a finite number of game forms. Each
player has a universal strategy space Si.

4 Let S :=
∏

i∈I Si. The strategy space of a player
i in any observed game form will always be a subset of his universal strategy space Si.
Because we assume that in each observed game form we observe each player’s choice of
strategy, it is without loss of generality to identify the outcome space with the Cartesian
product of players’ strategy spaces.5 Thus the set of observed game forms, denoted by
Λ, is a set of Cartesian product subsets of S. For each game form S in Λ, we observe
the strategy profiles played. We assume that if there are several strategy profiles which
players would be willing to choose, then we observe all of these as chosen. Formally, we
are given a choice correspondence C : Λ ⇉ S with the property that C(S) ⊆ S for all
S ∈ Λ. Though C is not required to be non-empty valued in general, we do assume that
C(S) is non-empty for all effectively one-player game forms S, i.e. all game forms in which
at most one player has more than one strategy available to her. We first ask whether there
exist preferences that make the observed choice correspondence the pure strategy Nash
equilibrium correspondence.

Definition 1. A choice correspondence C : Λ ⇉ S is Nash rationalizable if there exist
total, transitive and reflexive preferences (%i)i∈I on S such that for all S ∈ Λ, the chosen
set C(S) is the set of pure strategy Nash equilibria of (S, (%i)i∈I), i.e.

s∗ ∈ C(S) ⇐⇒ ∀i∈I , ∀si∈Si
, s∗ %i (si, s

∗
−i).

As in revealed preference theory, it is useful to define a revealed preference relation
(Samuelson, 1938; Richter, 1966) for each player. These revealed preference relations for-
malize the notion that if an observed strategy profile is to be rationalized as an equilibrium,
then it must be preferred by each player to all other strategy profiles that could have been
reached by him via unilateral deviation. Formally, define for each i ∈ I a relation Vi on S:

sVis
′ ⇐⇒ ∃S∈Λ

[

s, s′ ∈ S and ∀j∈I\{i} sj = s′j and s ∈ C(S)
]

. (1)

3But we assume that players know their own (and possibly other players’) preferences. Only us, the
observers, are ignorant of players’ preferences.

4Note that the spaces Si are not assumed to be finite.
5Our results would easily generalize to the case where the outcome space is not necessarily identical

with the product of strategy spaces. However, making the less restrictive assumption that only outcomes
are observed and players’ strategy choices are not would complicate the analysis. The NP-completeness
result of the next section would, a fortiori, still hold.
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In words, s is directly revealed preferred to s′ if, and only if, in some observed game form
S, the strategy profile s was chosen, and the strategy profile s′ was not chosen but was
reachable to i through a unilateral deviation from s. Let Wi be the transitive closure of
Vi, i.e. the indirectly revealed preferred relation.

Definition 2 (I-Congruence). A choice correspondence C satisfies I-Congruence if the
following condition holds:

∀S∈Λ∀s∈S

[

[∀i∈I∀s′
i
∈Si

sWi(s
′
i, s−i)] ⇒ s ∈ C(S)

]

. (2)

In words, if a strategy profile is indirectly revealed preferred by each player to all strategy
profiles that he could unilaterally deviate to, then this strategy profile should be observed as
chosen.

This condition is a direct generalization of the Congruence axiom in Richter (1966) to
games. Previous authors have made the assumption that observations are complete in the
sense that the domain Λ contains all Cartesian product subsets of S. For the theorem
below, this assumption of “complete domain” is relaxed to “closed domain:”

Definition 3. A class Λ of game forms is closed if S ∈ Λ implies that for any s ∈ S and
any i ∈ I, the reduced game form s−i × Si is also in Λ, where s−i × Si denotes the game
form with singleton strategy sets {sj} for all players j 6= i and with strategy set Si for i.

This definition of closedness is essentially the same as the one used in Peleg and Tijs
(1996) in their axiomatization of Nash equilibrium.

Theorem 1. Suppose Λ is closed. A choice correspondence C : Λ ⇉ S is (pure strategy
Nash equilibrium) rationalizable if and only if it satisfies I-Congruence.

This characterization relaxes the complete domain assumption to closed domain. How-
ever, the theorem does not hold if Λ is allowed to be any arbitrary set of game forms, as
the example below illustrates.

Example 1. Suppose that two players are observed playing four game forms. The universal
strategy spaces for the players are S1 = {U,D} and S2 = {L,M,R}. We display the four
observed game forms below, with a square marking the (only) strategy profile that’s observed
as chosen.

L M
U
D

M R
U
D

L M
U

M R
D

(D,L)V1(U, L)
(D,L)V2(D,M)

(U,R)V1(D,R)
(U,R)V2(U,M)

(U,M)V2(U, L) (D,M)V2(D,R)

The domain of this choice correspondence is not closed; for example, the one-player
game form {U,D} × {M} is not observed, even though the larger game form {U,D} ×
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{M,R} is.6 The example does, however, satisfy I-Congruence. Under each observation,
we show the directly revealed preferred relations derived from that observation. The only
additional indirectly revealed preferred relations are: (D,L)W2(D,R) and (U,R)W2(U, L).
It is straightforward to check that in each game form above, every strategy profile that is
directly (V ) or indirectly (W ) revealed preferred by each player to the strategy profiles that
he could reach by unilaterally deviating is, in fact, chosen. But this choice correspondence
is not Nash rationalizable. To see this, suppose we found rationalizing preferences for
each player. These preferences will have to be, by definition, extensions of the revealed
preferred relations above. How do player 1’s preferences rank (U,M) and (D,M)? If
they rank (U,M) higher, then we should have observed (U,M) as chosen in the first game
form above, because (U,M)V2(U, L), and 2’s preferences will have to respect this fact. But
if 1’s preferences rank (D,M) higher, then we should have observed (D,M) as chosen
in the second game form above, because (D,M)V2(D,R), and 2’s preferences will have
to respect this fact. Thus it is impossible to find preferences that rationalize this choice
correspondence.

Proof of Theorem 1. Necessity: Suppose there are total, transitive and reflexive preferences
(%i)i∈I on S such that for any S ∈ Λ, the choice set is the set of Nash equilibria: C(S) =
{s ∈ S|∀i∈I∀s′

i
∈Si

s %i (s
′
i, s−i)}. Suppose that for some S∗, there is an s∗ ∈ S∗ such that

for all i ∈ I, it is revealed preferred to all others available: s∗Wi(s
′
i, s−i) for all s

′
i ∈ S∗

i , and
yet s∗ /∈ C(S∗). Since, under our initial supposition, for any s, s′ ∈ S, the relation sVis

′

implies that s %i s
′ and since %i is transitive, s

∗Wi(s
′
i, s−i) implies that s∗ %i (s

′
i, s−i) for

all s′i ∈ S∗
i , for all i ∈ I. Thus s∗ is a Nash equilibrium and so s∗ ∈ C(S∗), contradicting

our initial supposition and proving the necessity of I-Congruence.
Sufficiency: Assume that I-Congruence holds. For S ∈ Λ and s ∈ S, let Ss

i denote the
one-player game form with strategy sets {sj} for all j 6= i, and strategy set Si for player i.
For each i ∈ I, let Λi := {Ss

i |S ∈ Λ, s ∈ S}. (Note that by closedness ∅ 6= Λi ⊆ Λ.) We
derive, for each i ∈ I, an “individual choice correspondence” Ci on Λi. For all Ŝ ∈ Λi, let

Ci(Ŝ) := {s ∈ Ŝ|s ∈ C(S) for some S with Ŝ = Ss
i } (3)

Note that Ci is non-empty valued because we assumed that C is non-empty valued for one-
player game forms. By definition, the revealed preferred relation derived from Ci coincides
with Wi. Therefore, by I-Congruence, Ci coincides with C on Λi. Since I-Congruence
restricted to the one-player games Λi is the same as the Congruence axiom of Richter
(1966), for each i ∈ I there exists a total, transitive, reflexive binary relation %i on S such
that for each Ŝ ∈ Λi, the set Ci(Ŝ) = C(Ŝ) is the set of %i-maximal elements. We will
show that these preferences (pure strategy Nash equilibrium) rationalize C on Λ.

6The reader can use this example to compare the complete domain assumption with our closed domain
assumption. This domain could be made closed by adding all one-player game forms to it that are contained
in one of the four game forms. These would be {U,D}×{M}, {U,D}×{R}, {U,D}×{L}, {D}×{L,M},
{U} × {M,R}, {U} × {L,R}, and {D} × {L,R}. However, the domain would still not be complete, for
the game forms {U,D} × {L,R} and {U,D} × {L,M,R} would not be included in it.
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C(S) are Nash equilibria: Given S ∈ Λ, suppose s′ ∈ C(S). Then, for all i ∈ I, by the

definition of Wi it must be that s′Wis
′′ for all s′′ ∈ Ss′

i . Since %i extends Wi (see Richter
(1966)), this implies that for all i ∈ I, s′ %i s′′ for all s′′ ∈ Ss′

i , i.e. that s′ is a Nash
equilibrium.

All Nash equilibria are chosen by C: Given S ∈ Λ, suppose that s′ ∈ S is a Nash equi-

librium, i.e. for all i ∈ I, it holds that s′ %i s
′′ for all s′′ ∈ Ss′

i . Since %i rationalizes Ci = C

on Λi, we have s′ ∈ Ci(S
s′

i ) = C(Ss′

i ). Then s′Wis
′′ for all s′′ ∈ Ss′

i , and, by I-Congruence,
s′ ∈ C(S).

3 The complexity of Nash rationalizability

The characterization theorem in the previous section shows that under a closed domain,
the characterization of rational behavior in individual decision theory can be naturally
extended to characterize Nash rationalizable behavior in games. Two questions arise.
First, is there a similarly intuitive and simple characterization for general (unrestricted)
domains? In other words, can we drop the “closed domain” assumption in Theorem 1?
And second, would it be computationally tractable in practice to determine whether a
set of observations is Nash rationalizable? It turns out that the answer to the second
question helps us answer the first. Determining Nash rationalizability under a closed
domain is computationally tractable, but in general it is an NP-complete problem. The
computational complexity of the general problem translates into a descriptive complexity
that precludes a characterization of the kind we stated for closed domains. Similarly,
the simple characterization of Nash rationalizability under closed domains implies the
computational tractability of that problem.

3.1 Computational complexity

In this section we assume that the universal strategy spaces Si are finite. Let Λ be an
arbitrary finite set of game forms, i.e. a set of Cartesian product subsets of S.7 For each
game form S ∈ Λ, we observe the strategy profiles played. We assume that if there are
several strategy profiles which players would be willing to choose, then we observe all of
these as chosen. As before, we ask whether a given choice correspondence C is pure strategy
Nash rationalizable. To simplify notation, we now require Nash rationalizability by strict
preferences.8

It is possible to characterize pure strategy Nash rationalizability for arbitrary domains
(Galambos, 2004), though that characterization involves a statement using second-order
logic. In addition to deriving revealed preference relations from chosen strategy profiles (as
in section 2), one must also derive revealed preference relations from non-chosen strategy
profiles. Suppose, for example, that {s1, s2, s3} × {z1, z2, z3} is a 3 × 3 game form in Λ

7Recall that S :=
∏

i∈I Si.
8All the results below continue to hold if we ask for rationalizability by weak preferences.

6



(involving only two players), and the strategy profile chosen by C is (s1, z1) (see Figure 1).
As in section 2, we then infer that if C is to be Nash rationalized, it must be that

(s1, z1) ≻1 (s2, z1) and (s1, z1) ≻1 (s3, z1) and (4)

(s1, z1) ≻2 (s1, z2) and (s1, z1) ≻2 (s1, z3). (5)

These relations are all derived from the observation that (s1, z1) is observed as chosen. But
it turns out to be also necessary to derive relations from the observation that certain other
strategy profiles were not chosen. For example, since (s3, z3) was not chosen, it must also
be that

(s2, z3) ≻1 (s3, z3) or (s1, z3) ≻1 (s3, z3) or (6)

(s3, z2) ≻2 (s3, z3) or (s3, z1) ≻2 (s3, z3).

It is not surprising that deciding Nash rationalizability from a set of such disjunctions could
be computationally very complex. It is natural to ask whether there exists an alternative,
not so complex method for deciding rationalizability. The main result of this section
answers that question in the negative.

Theorem 2. The (pure strategy Nash equilibrum) rationalizability problem is NP-complete.

In fact, we prove a stronger statement: The (pure strategy Nash equilibrum) ratio-
nalizability problem is NP-complete even if there are only two players. As Fortnow and
Homer state in their lucid review of complexity theory, “A proof of NP-completeness has
come to signify the (worst case) intractability of a problem.” (Fortnow and Homer, 2003)
The proof of Theorem 2 (in Appendix A) is based on a standard technique in the the-
ory of computational complexity: “polynomially reducing” a problem that is known to be
NP-complete to the given problem.9

3.2 Descriptive complexity

The computational intractability of the general Nash rationalizability problem could, in
principle, still leave open the possibility that an intuitive characterization of Nash rational-
izable choice correspondences exists. Some might argue that from the point of view of the
testable implications literature, it is the insightfulness and elegance of the characterizing
property that matters more than the practical issue of ease of computability. However, an
important and mathematically satisfying insight of the descriptive complexity literature
says that the two are equivalent in a very specific sense.

While the computational complexity of a query is the (worst case) length of time10 it
could take to determine whether an object has the specified property, descriptive complex-

9Specifically, we use 3SAT, a version of the satisfiability problem that was shown to be NP-complete
in Cook (1971).

10Though we focus on time complexity here, analyzing space complexity is also common in the literature.
Also, computing time is measured using a standardized model of a universal computer, a Turing machine.
See Fortnow and Homer (2003) for a brief but broad review.
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ity theory focuses on the logical language necessary to state that property.11 Surprisingly,
these two notions of complexity are closely related. To formulate the results we use from
descriptive complexity theory, we need some basic notions from finite model theory.

3.2.1 Finite model theory

A boolean query is a formulation of a question of the form “Which objects in a class of
objects have a specified property?” The boolean query of interest to us is “Which choice
correspondences are Nash rationalizable?” To state this query formally, we need some basic
definitions.12 A relational vocabulary is a tuple

τ = 〈Ra1
1 , . . . , Rar

r , c1, . . . , cs〉, (7)

where Rai
i is a relation of arity ai, and the ci are constant symbols. A structure with

vocabulary τ is a tuple
A = 〈|A|, RA

1 , . . . , R
A
r , c

A
1 , . . . , c

A
s 〉, (8)

where the finite nonempty set |A| is the universe, and each RA
i is a relation of arity ai on

|A|. For each constant symbol ci ∈ τ , there is a constant cAi ∈ |A|.
The relational vocabulary we use to represent choice correspondences for I players as

boolean queries is
τ Icc = 〈G1, R2

1, . . . , R
2
I , C

2, F 2〉. (9)

The unary relationG1 specifies a set of elements in the universe, each of which will designate
a game form in the domain of the choice correspondence. The remaining elements in the
universe will correspond to strategy profiles in the universal strategy space. The structure
of the universal strategy space (denoted by S in earlier sections) is described using the
binary relations R2

i . Two elements in the universe are related in R2
i if the strategy profile

corresponding to one can be reached from the strategy profile corresponding to the other
by a unilateral deviation by player i. The binary relation F 2 describes the strategy profiles
belonging to each game form in the domain of the choice correspondence, and the binary
relation C2 specifies the chosen elements for each game form. The vocabulary has no
constant symbols.

Specifically, a choice correspondence for I players13 C : Λ ⇉ S is represented as a
structure AC with vocabulary τ Icc as follows. Suppose the cardinality of the universal
strategy space is |S| = n, and the number of game forms in the domain of the choice
correspondence is |Λ| = k. Then let the cardinality of the universe |AC| be ||AC|| =
n + k. Let k arbitrary elements of |AC| be in the unary relation GAC ; each g ∈ GAC is
a “placeholder” for a game form S ∈ Λ. To define the remaining relations, let b : S →

11Descriptive complexity is not to be confused with Kolmogorov complexity, which is sometimes also
labeled “descriptive.” The latter measures the length of the shortest algorithm that produces a given
string. See Chapter 14 in the comprehensive book by Cover and Thomas (2006) for more.

12We follow the notation of Immerman (1999), and we refer the interested reader to that excellent
monograph for more on this subject.

13Recall that S =
∏

i∈I Si and Λ is a set of Cartesian product subsets of S.
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|AC|\G
AC be a bijection. For each s, s′ ∈ S and i ∈ I, let (b(s), b(s′)) ∈ RAC

i if, and
only if, s and s′ differ only in player i’s strategy. To define the binary relations FAC and
CAC , let ℓ : Λ → GAC be a bijection. Then, for each game form S ∈ Λ and for each
strategy profile s ∈ S, let (ℓ(S), b(s)) ∈ FAC , which can be read as “the game identified
with ℓ(S) ∈ AC contains the strategy profile identified with b(s) ∈ AC.” Thus the binary
relation FAC describes the game forms in the domain of the choice correspondence. Then,
for each game form S ∈ Λ and for each strategy profile s ∈ S, let (ℓ(S), b(s)) ∈ CAC if,
and only if, s ∈ C(S). Let STRUC[τ Icc] be the set of all structures that are derived from
some I-player choice correspondence. The reader will have no difficulty in verifying that
all information contained in a choice correspondence C is preserved in the structure AC,
and that the choice correspondence C can therefore be easily recovered from the structure
AC.

3.2.2 Descriptive and computational complexity of Nash rationalizability

Now the Nash rationalizability question for I players can be formulated as a boolean query
NR : STRUC[τ Icc] → {0, 1}, where for any structure A ∈ STRUC[τ Icc], we have NR(A) = 1
if, and only if, the choice correspondence recovered from A is Nash rationalizable (as
defined in Definition 1 above). In the language of this section, NR(A) = 1 if, and only if,
there exist total, transitive and reflexive binary relations (%i)i∈I on |A|\GA such that for
all g ∈ GA, the chosen set {a ∈ A : (g, a) ∈ CA} is the set of pure strategy Nash equilibria
under (%i)i∈I in the game form consisting of the strategy profiles {a ∈ A : (g, a) ∈ FA},
i.e.

∀gg∈GA∀a(g,a)∈FA (g, a) ∈ CA ⇐⇒ ∀ii=1,...,I∀a
′

(a,a′)∈R
A
C

i

, a %i a
′.

This statement of the Nash rationalizability query uses the language SO∃, i.e., exis-
tential second-order logic: the definition starts with an existential second-order statement
(“there exist binary relations such that. . . ”), and continues with a first-order statement
(the displayed formula above). The appeal of the restricted-domain characterization of
Nash rationalizability in Theorem 1 is that it reduces this existential second-order defini-
tion to a first-order property, I-Congruence. To be precise, I-Congruence uses first-order
logic extended by the transitive closure operator. We note that classical revealed preference
theory achieves the same: it reduces the second-order existential definition of rationaliz-
ability to the Strong Axiom of Revealed Preference or to the Congruence axiom, which use
only first-order logic extended by the transitive closure operator. Asking whether there
exists a similarly simple, appealing, and general revealed preference characterization of
Nash rationalizability amounts to asking whether the NR query above can be stated using
first-order logic extended by the transitive closure operator. Having formulated the Nash
rationalizability problem as a boolean query, we can answer this question by translating
our computational complexity result of Theorem 2 into a descriptive complexity result.

Fagin’s Theorem (Fagin, 1973) was the first result establishing a close correspondence
between computational and descriptive complexity, and it showed that the class NP (non-
deterministically polynomial queries) is equal to the class SO∃ (queries that can be stated
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using existential second-order logic).14 Thus the fact that we could define Nash rationaliz-
ability using existential second-order logic implies that determining Nash rationalizability is
in the computational complexity class NP. The contribution of our Theorem 2 is that Nash
rationalizability is NP-complete, therefore it is not in the class P of polynomial queries
(unless15 P = NP). But, as Corollary 1 below shows, the (computational) complexity class
P of polynomial queries contains the (descriptive) complexity class FO(TC) of queries
using first-order logic with transitive closure. This means that the Nash rationalizability
query is not in the descriptive complexity class FO(TC), and there is no Congruence-like
condition characterizing Nash rationalizability generally.

Corollary 1 (Corollary of Theorem 3.1 in (Immerman, 1999)). For finite structures,
FO(TC) ⊆ P .

Proof. This result follows immediately from the Immerman-Vardi Theorem,16 and is dis-
cussed in section 9.2 of Immerman (1999). For completeness, we spell out the proof,
deriving it from a more basic result. Theorem 3.1 in (Immerman, 1999) shows that first-
order queries are computable in logspace, a lower complexity class than P . Thus first-order
queries are computable in polynomial time. To complete the proof of Corollary 1, we need
to show that the time requirement of taking the transitive closure of a binary relation is
polynomial in the input size, i.e., in the size of the structure. Given a binary relation R0,
applying the single-step transitive closure rule “if aR0b and bR0c then let aR′

0c” and taking
the union R1 = R0 ∪ R′

0 gives us a new binary relation, R1. If there are n elements in the
universe, the single-step transitive closure will be carried out at most n4 times. Iterating
this procedure will eventually cease to yield any new pairs in the relation, i.e. for some
(smallest) k we will have Rk = Rk+1. Up to that k, every step yields at least one new
member of the binary relation, so k < n2. Thus the transitive closure operator takes at
most n6 steps and is polynomial in n.

An immediate implication of Corollary 1 together with Theorem 2 is:

Corollary 2. For general, unrestricted domains, there exists no characterization of Nash
rationalizability using only FO(TC), unless P = NP.

14We refer the interested reader to the authoritative book by Immerman (1999) for an in-depth expo-
sition.

15This qualification is a reminder that the P
?
= NP problem is one of the most important open problems

in mathematics today, even though it is widely believed that P $ NP. We follow the literature in assuming
that this is very likely the case.

16Just as the theorem of Fagin (1973) shows that the computational complexity class NP is equal to
a natural descriptive complexity class (SO∃), the Immerman-Vardi Theorem (Immerman (1982); Vardi
(1982); stated as Theorem 4.10 in Immerman (1999)) shows that the computational complexity class P is
equal to the descriptive complexity class FO(LFP), the class of queries that can be stated using first-order
logic extended by the least fixed point (LFP) operator. The LFP operator adds the power of inductive
definitions to first-order logic. One of the most important examples of an inductive definition is transitive
closure for binary relations. Though the theorem holds only for finite, ordered structures, the direction we
use does not need to assume an ordering.

10



For finite strategy spaces, Corollary 1 also has implications for the computational com-
plexity of Nash rationalizability under a closed domain. It implies, with Theorem 1, the
following:

Corollary 3. Under the assumption of a closed domain and a finite strategy space S, the
Nash rationalizability problem is decidable in deterministic polynomial time, i.e. it is in
the class P .

Proof. Theorem 1 shows that under the assumption of closed domains, Nash rationaliz-
ability can be equivalently stated using a first-order formula and transitive closure. Thus
by Corollary 1 it is polynomial. 17

4 Conclusion

This paper brings together two growing literatures: that on the testable implications of
collective choice theories and that on complexity and game theory. We considered the Nash
rationalizability problem under a closed domain and also under unrestricted domains. In
the first, more restricted setting, we presented a natural characterization of Nash ratio-
nalizability. In the second, more general setting, we showed that the problem of Nash
rationalizability is computationally very complex. Then we explained that the simplicity
of the characterization in the first setting is equivalent to the computational tractability
of that problem, while the computational intractability of Nash rationalizability in the
unrestricted setting implies that no characterization exists that is as simple as the classical
revealed preference conditions. We relied on results from descriptive complexity theory, a
subfield that may be of further interest to game theorists and economists in general.

Our work establishes that the assumption of a closed domain makes Nash rationaliz-
ability computationally tractable, while unrestricted domains lead to untractability. One
direction for further work in this area would be to explore what level of complexity other
assumptions on the structure of observations would imply.

An interesting question for future research is the role of beliefs in multi-agent decision
making. Since the literature so far has addressed only the Nash equilibrium solution
concept, the role of beliefs has been hidden by the implicit assumption that agents’ beliefs
correspond exactly to the actions taken. If one were to study behavior generated by non-
equilibrium solution concepts, such as Pearce-Bernheim rationalizability, the prominent
role of beliefs would become apparent.

Another interesting aspect of this problem is the relationship between the analyst or
observer and the decision making process. In rationalizability for individual choice prob-
lems, it seems clear that the observer and the decision making process are entirely separate.
That is, the analyst is outside the decision making problem, observing the behavior of the
decision-maker. In collective decision making situations, it is conceivable that the analyst
is himself one of the decision-makers. For example, a player in a game, not knowing the

17The finiteness assumption in Corollary 3 is necessary so that it makes sense even to ask the compu-
tational complexity question. Theorem 1 applies to not necessarily finite structures as well.
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preferences of the other players, might attempt to draw conclusions concerning the plausi-
bility of certain possible outcomes, based on some previous experiences of games played by
the same agents. Analyzing situations of this kind might lead to interesting applications.

A Appendix

Here we prove Theorem 2 of section 3, which states that the Nash rationalizability problem
(NR) is NP-complete. Our proof involves two additional problems: Nash rationalizability
with only two players18 (NR2), and the classic problem of determining the satisfiability of a
Boolean formula in conjunctive normal form with three disjuncts in each conjunct (3SAT).

Proof of Theorem 2. We will prove the theorem using polynomial-time reduction, a stan-
dard technique in the theory of computational complexity. We will show that the 3SAT
problem, known to be NP-complete (see Cook (1971) and Garey and Johnson (1979)), poly-
nomially transforms into the Nash rationalizability problem with two players (henceforth
denoted by NR2), which is a special case of the Nash rationalizability problem (henceforth
denoted by NR). That is, we will construct an algorithm that runs in polynomial time,
and, given any instance of 3SAT, produces an instance of NR2 with the property that the
NR2 instance is rationalizable if and only if the 3SAT instance is satisfiable. This will
imply that if there exists a polynomial-time algorithm for deciding NR2, then any instance
of 3SAT can be decided in polynomial time by first polynomially transforming it into an
instance of NR2 and then deciding that in polynomial time. Since 3SAT is NP-complete,
this argument will establish that NR2 is NP-complete.

NR2: The Nash rationalizability problem with two players can be described as follows.
Let S := {s∗, s

∗, s0, s1, s2, s3, . . . } be the set of potential actions of player 1 (in any game
form a finite subset of this will be player 1’s action space). Let Z := {z∗, z

∗, z0, z1, z2, . . . }
be the set of potential actions of player 2 (in any game form a finite subset of this will be
player 2’s action space). An instance of NR2 consists of a choice function on a finite set of
finite game forms of S × Z. For example, the following instance of NR2 encodes a choice
function on two game forms.

({s0, s1, s2} × {z0, z1}, s2z1) , ({s0, s4, s5} × {z0, z2}, s4z0) (10)

The first game form is {s0, s1, s2} × {z0, z1}, and the (only) observed outcome is (s2, z1).
In general, an instance of NR2 consists of a list of game form–outcome pairs of the form
(A×B, ab), where A ⊂ S, B ⊂ Z and a ∈ A, b ∈ B. An instance of NR2 is a yes-instance if
the corresponding choice function is (pure strategy Nash equilibrium) rationalizable, and it
is a no-instance if it is not. A polynomial-time algorithm for NR2 is a polynomial-time al-
gorithm that returns, for any given instance of NR2, a yes if and only if it is a yes-instance.
Below we will show that if there exists a polynomial-time algorithm for NR2, then there

18I.e. the same two players are involved in every observed game form.
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exists a polynomial-time algorithm for 3SAT, which proves that NR2 is NP-complete.19

3SAT: Suppose thatX = {x1, x2, . . . , xm} is a set of Boolean variables and X̄ = {x̄1, . . . , x̄m}
is the set of their negations. For any truth assignment T : X → {t, f}, we define for x̄ ∈ X̄
the extension of T by T (x̄) = t if, and only if T (x) = f. The set X∗ := X ∪ X̄ is the set
of literals. A subset C of X∗ is a clause. Suppose a set {C1, . . . , Ck} of clauses is given.
A truth assignment T : X → {t, f} satisfies {C1, . . . , Ck} if for every clause Ci there exists
x ∈ Ci with T (x) = t. A set of clauses is satisfiable if there exists a truth assignment that
satisfies it. We can now state 3SAT: Given an arbitrary finite set of clauses with exactly
three elements in every clause, does there exist a satisfying truth assignment? 3SAT is
known to be NP-complete (see Garey and Johnson (1979)).
3SAT → NR2: We now define the polynomial-time transformation mentioned at the
beginning of the proof. That is, we define a polynomial-time algorithm that takes any in-
stance of 3SAT as its input, and produces an instance of NR2 that is rationalizable if and
only if the input 3SAT instance is satisfiable. Suppose we are given an arbitrary instance
of 3SAT:

V =
{

{v11, v
2
1, v

3
1}, {v

1
2, v

2
2, v

3
2}, · · · , {v

1
l , v

2
l , v

3
l }
}

, (11)

where vij ∈ X∗. Suppose w.l.o.g. that the set of variables that appear in V is {x1, . . . , xk}.
We will construct an instance of NR2 for V , using the actions s∗, s

∗, s0, s1, . . . , sk for player
1, and the actions z∗, z

∗, z0, z1, . . . , zk for player 2.
Informal description of the construction: For every clause, we construct a game form
where player 1’s action set is s0, s

∗, and all si such that xi appears in the clause and is
not negated; player 2’s action set is z0, z

∗, and all zi such that xi appears in the clause
and is negated. The (unique) outcome for this game form is (s∗, z∗). We will construct
these game forms in such a way that rationalizing (s∗, z∗) as a Nash equilibrium will always
be possible (and very simple), and it will also be possible (and simple) to rationalize all
other points except (s0, z0) as not Nash equilibria. Thus rationalizability will boil down
to being able to assign preferences in such a way that (s0, z0) is not a Nash equilibrium,
and this will be possible if, and only if, the clause on which the game form was based is
satisfied. Satisfying all clauses simultaneously will be possible if, and only if, the set of
games constructed according to the above description can be simultaneously rationalized.
Using an example, I will present further details of the construction, and then I will proceed
to a general description. Suppose the variables appearing in an instance of 3SAT are
x1, x2, x3, x4, x5, and one particular clause is {x1, x̄2, x3}. Following the above described
construction, we have a game form–outcome pair ({s0, s1, s3, s

∗} × {z0, z2, z
∗}, s∗z∗). We

will add two additional game form–outcome pairs that will imply that player 1 prefers
(s0, z0) to (s∗, z0) and that player 2 prefers (s0, z0) to (s0, z

∗). Rationalizability will boil
down to finding preferences for the players such that either player 1 prefers (s1, z0) to
(s0, z0), or player 1 prefers (s3, z0) to (s0, z0), or player 2 prefers (s0, z2) to (s0, z0). The
first of these will correspond to setting x1 true, the second will correspond to setting x3

19It is clear that NR2 is in the class NP: given an instance of NR2 and preference relations for every
player, it can be checked in polynomial time whether the preferences Nash rationalize the given choice
function.
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true, and the third will correspond to setting x2 false. This procedure, however, may lead
us to assign preferences implying both that a variable xi is true and that it is false. In
the example just described, we might rationalize (s0, z0) not being a Nash equilibrium by
assigning player 2 a preference of (s0, z2) over (s0, z0), which would correspond to setting
x2 false. At the same time, we might rationalize (s0, z0) not being a Nash equilibrium in
another game form by assigning player 1 a preference of (s2, z0) over (s0, z0), which would
correspond to setting x2 true. To prevent this, we construct a “module” of game form–
outcome pairs (denoted below by Γ2) that will be rationalizable, but only if exactly one
of the above two possibilities hold: either player 2 prefers (s0, z2) to (s0, z0), or player 1
prefers (s2, z0) to (s0, z0), but not both (see Figure 2).
Detailed description of the construction: First we construct a set of games for every
variable that is negated in some clause in V . That is, suppose {v1j , v

2
j , x̄h} ∈ V . Then we

construct Γh, which consists of the following game form–outcome pairs:

({s0, sh, s∗} × {z0, zh, z∗}, s∗z∗) (12)

({s0} × {zh, z∗}, s0zh)

({s0} × {z0, z∗}, s0z0)
20

({sh} × {zh, z∗}, shzh)

({sh} × {z0, z∗}, shz0)

({sh, s∗} × {z0}, shz0)

({s0, s∗} × {z0}, s0z0)
20

({sh, s∗} × {zh}, shzh)

({s0, s∗} × {zh}, s0zh)

Figure 2 illustrates this set of game form–outcome pairs. For transparency, the first pair
in (12) is not shown (and, given the other eight game form–outcome pairs in the list, its
rationalizability will depend only on orienting the edge cycle in Figure 2 b)). Each of the
remaining eight involve only one player, and only two points, and so each has one revealed
preference implication: the point chosen is preferred to the one not chosen. Figure 2 a)
shows the resulting eight such implications, with the arrows pointing to the preferred point.
For example, ({s0} × {zh, z∗}, s0zh) is shown as an arrow pointing from (s0, z∗) to (s0zh).

Now we transform the 3SAT instance V into an instance of NR2 as follows.

1. Replace every clause of the form {xe, xf , xg} with

({s0, se, sf , sg, s
∗} × {z0, z

∗}, s∗z∗). (13)

2. Replace every clause of the form {xe, xf , x̄g} with

({s0, se, sf , s
∗} × {z0, zg, z

∗}, s∗z∗) (14)

20Note that this is independent of h, so this game form–outcome pair could be included only once, not
for every variable xh that is negated in some clause.
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and Γg (see (12) for the definition of the nine game form–outcome pairs in Γh for
h = 1, . . . , k).

3. Replace every clause of the form {xe, x̄f , x̄g} with

({s0, se, s
∗} × {z0, zf , zg, z

∗}, s∗z∗) (15)

and Γg and Γf .

4. Replace every clause of the form {x̄e, x̄f , x̄g} with

({s0, s
∗} × {z0, ze, zf , zg, z

∗}, s∗z∗) (16)

and Γg,Γf and Γe.

5. Add the following game form–outcome pairs:

({s0} × {z0, z
∗}, s0z0), ({s0, s

∗} × {z0}, s0z0). (17)

The resulting instance of NR2 will be denoted by NRV .
In the worst case, all variables that appear in V are distinct and are negated, which

gives l · 30 game form–outcome pairs, i.e. the input size is increased by a multiplicative
factor. The transformation involves only replacing each clause by at most 30 game form–
outcome pairs, as described above, and so it runs in polynomial time (in fact in linear
time).

V satisfiable ⇐⇒ NRV Nash rationalizable: Now we must show that the poly-
nomial transformation V 7→ NRV constructed above has the property mentioned at the
beginning of the proof: V is satisfiable if and only if NRV is Nash rationalizable.
⇐ First, suppose NRV is Nash rationalizable. Let21 Sk := {s∗, s

∗, s0, s1, . . . , sk} and
Zk := {z∗, z

∗, z0, z1, . . . , zk}, and denote the players’ rationalizing preferences on Sk × Zk

by ≻1, and ≻2. Define, for each variable xi with i ∈ {1, 2, . . . , k} (recall that these are
exactly the variables that appear in V ) a truth assignment:

T≻(xi) = t ⇐⇒ siz0 ≻1 s0z0. (18)

Consider a clause of the form {xe, xf , xg}. Since NRV contains (see (13) and (17))

({s0, se, sf , sg, s
∗} × {z0, z

∗}, s∗z∗), (19)

({s0} × {z0, z
∗}, s0z0),

({s0, s
∗} × {z0}, s0z0),

and since s0z0 is not a Nash equilibrium in the first game form, but it is an equilibrium in
the second and the third, it must be that

[sez0 ≻1 s0z0] or [sfz0 ≻1 s0z0] or [sgz0 ≻1 s0z0]. (20)

21Recall that V involves the variables x1, . . . , xk.
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Under T≻ this means that {xe, xf , xg} is satisfied.
Now consider a clause of the form {xe, xf , x̄g}. It is easy to see that if ≻1, and ≻2

rationalize NRV , then it follows from the construction of Γg that either s0z0 ≻2 s0zg holds,
or s0z0 ≻1 sgz0 holds, but not both.22

If s0z0 ≻1 sgz0, then by definition T≻(xg) = f, so {xe, xf , x̄g} is satisfied. If, on the
other hand, sgz0 ≻1 s0z0, then s0z0 ≻2 s0zg holds (the edge cycle in Γg must be oriented),
and since s0z0 is not a Nash equilibrium in ({s0, se, sf , s

∗} × {z0, z
g, z∗}, s∗z∗) (see (14)),

it must be that either sez0 ≻1 s0z0 or sfz0 ≻1 s0z0. Then, by the definition of T≻, either
T≻(xe) = t or T≻(xf ) = t, and so {xe, xf , x̄g} is satisfied.

The situation for clauses of the type {xe, x̄f , x̄g} and {x̄e, x̄f , x̄g} is analogous, and these
clauses will also be satisfied by T≻. Thus the truth assignment T≻ satisfies V .

⇒ To prove the converse, suppose that V is satisfied by a truth assignment T . We
will describe rationalizing (non-total) preference relations ≻1 on Sk and ≻2 on Zk, and
we will show that they are acyclic.23 Then extensions of these orders to total orders will
also rationalize NRV . First we define player 1’s preferences. The example in Figure 3
illustrates the construction of rationalizing preferences (for both players).

1. For z ∈ Zk\{z0}, let (s
∗, z) be the best element in the row Sk × {z} under ≻1. (In

fact, for simplicity, we may order the points in the rows Sk × {z∗} and Sk × {z∗} as
shown in figure 3.)

2. In the row Sk × {z0} let (s∗, z0) be the worst element under ≻1.

3. For z ∈ Zk\{z∗, z
∗, z0}, let (s∗, z) be the worst element in the row Sk × {z} under

≻1.

4. In the row Sk ×{z0} let (s∗, z0) be worse than any other point except (s∗, z0) (which
we have already defined to be the bottom element in that row).

5. In the row Sk × {z∗} let (s∗, z∗) be the second best element under ≻1 (in step 1. we
defined (s∗, z∗) as the best element in this row).

6. For all i ∈ {1, 2, . . . , k} such that T (xi) = t, let siz0 ≻1 s0z0 and

(s0, zi) ≻1 (s1, zi) ≻1 · · · ≻1 (sk−1, zi) ≻1 (sk, zi), (21)

and for all i ∈ {1, 2, . . . , k} such that T (xi) = f, let s0z0 ≻1 siz0 and

(sk, zi) ≻1 (sk−1, zi) ≻1 · · · ≻1 (s1, zi) ≻1 (s0, zi). (22)

The preferences ≻2 for player 2 are defined symmetrically — one can just exchange the
roles of “s” and “z” in the preceding definition, and substitute ≻2 for ≻1 and “column”
for “row” — except for the crucial step 6., which becomes:

22In fact, Γg is constructed so that it is rationalizable if and only if the “edge cycle” indicated by a
dashed line in Figure 2 b) is oriented in one direction or the other.

23Recall that Sk := {s∗, s∗, s0, s1, . . . , sk} and Zk := {z∗, z∗, z0, z1, . . . , zk}.
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6’. For all i ∈ {1, 2, . . . , k} such that T (xi) = t, let s0z0 ≻2 s0zi and

(si, zk) ≻2 (si, zk−1) ≻2 · · · ≻2 (si, z1) ≻2 (si, z0), (23)

and for all i ∈ {1, 2, . . . , k} such that T (xi) = f, let s0zi ≻2 s0z0 and

(si, z0) ≻2 (si, z1) ≻2 · · · ≻2 (si, zk−1) ≻2 (si, zk). (24)

One can easily verify that the above defined preferences are acyclic. Since we defined
relations only on rows and columns, we can check acyclicity for each row and for each
column separately. In the row Sk × {z0} and in the column {s0} × Zk all relations involve
the point (s0, z0), and so there is no possibility of a cycle. In the rows Sk × {z∗} and
Sk × {z∗} and in the columns {s∗} × Zk and {s∗} × Zk it is again clear that ≻1 and ≻2

have no cycles; in fact, we can define preferences on these rows and columns as shown in
Figure 3. As to the remaining rows and columns, we will verify acyclicity on just one —
preferences on the others are defined very similarly. Consider the row Sk × {zi} (where
0 < i ≤ k). The point (s∗, zi) is the best element in that row, (s∗, zi) is the worst, and the
remaining are ordered linearly — i.e., the entire row is ordered linearly.

It remains to show that these preferences do, in fact, rationalize all the game form–
outcome pairs in NRV . It is immediate that the sets of game form–outcome pairs Γi

(for i = 1, . . . , k) are rationalized by these preferences (that is, the outcome (s∗, z∗) is a
Nash equilibirum, and at any other profile either player 1 prefers to deviate under ≻1 or
player 2 prefers to deviate under ≻2). Checking that the other game form–outcome pairs
(13–17) are also rationalized by ≻1 and ≻2 is also routine. For example, consider one of
the type defined in (14): ({s0, se, sf , s

∗} × {z0, zg, z
∗}, s∗z∗). Under ≻1 and ≻2, the profile

(s∗, z∗) is clearly a Nash equilibrium. The profiles on the same row or column as (s∗, z∗)
are not Nash equilibria, because they are dominated by (s∗, z∗). The profile (s0, z0) is not
a Nash equilibrium because the truth assignment T (based on which ≻1,≻2 were defined)
is satisfied, and thus either (se, z0) ≻1 (s0, z0) or (sf , z0) ≻1 (s0, z0) holds (by step 6. in
the definition of ≻1), or (s0, zg) ≻2 (s0, z0) holds (by step 6’. in the definition of ≻2). The
remaining points are not Nash equilibria because either player 1 would deviate to his s∗

strategy, or player 2 would deviate to her z∗ strategy (or both).
We have shown that our polynomial transformation produces a Nash rationalizable

instance of NR2 if and only if the input 3SAT instance is satisfiable. Thus if an algorithm
could decide any instance of NR2 in polynomial time, then any instance V of 3SAT could be
be decided in polynomial time by first using our algorithm to produce NRV in polynomial
time, and then deciding NRV in polynomial time. Since 3SAT is NP-complete, this proves
that NR2 is NP-complete.

Acknowledgments

I am grateful to Marcel K. Richter for many inspiring and stimulating discussions on
these topics, as well as many suggestions. I wish to thank Beth Allen, Jan Werner, and

17



z1 z2 z3
s1
s2
s3

Figure 1: The strategy profile observed chosen is (s1, z1).

z∗

zh

z0

s0 sh s∗

a)

z∗

zh

z0

s0 sh s∗

b)

?

Figure 2: a) The game forms in Γh b) The “edge cycle” must be oriented for rationaliz-
ability (recall that these four points are not chosen in the first game form in (12))

z∗

z∗

z3

z2

z1

z0

s0 s1 s2 s3 s∗ s∗

best elements in column under ≻2

worst elements in column under ≻2

best elements in row under ≻1

worst elements in row under ≻1

Figure 3: Rationalizing preferences for T (x1) = t, T (x2) = f, T (x3) = t. The dashed line
indicates the relations that arise from T (x2) = f.

18



participants of the Micro/Finance and Micro/Game theory workshops at the University
of Minnesota for their comments, and especially Andrew McLennan for suggesting that I
investigate the computational complexity literature. This paper is based on my doctoral
dissertation at the University of Minnesota. I gratefully acknowledge the financial support
of the NSF through grant SES-0099206 (principal investigator: Jan Werner). I am grateful
for the detailed comments of two anonymous referees and an Associate Editor.

References

Carvajal, A., Ray, I., Snyder, S., February 2004. Equilibrium behavior in markets and
games: testable restrictions and identification. Journal of Mathematical Economics 40 (1-
2), 1–40.

Conitzer, V., Sandholm, T., 2002. Complexity of mechanism design. In: Darwiche, A.,
Friedman, N. (Eds.), Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence. 18th Annual Conference, Morgan Kaufmann Publishers, San Francisco,
California, pp. 103–110.
URL http://arxiv.org/abs/cs/0205075v1

Cook, S. A., 1971. The complexity of theorem-proving procedures. In: Proceedings of
the third annual ACM symposium on Theory of computing. Association for Computing
Machinery, pp. 151–158.

Cover, T. M., Thomas, J. A., 2006. Elements of Information Theory, 2nd Edition. Wiley–
Interscience.

Daskalakis, C., Goldberg, P. W., Papadimitriou, C. H., 2009. The complexity of computing
a nash equilibrium. Commun. ACM 52 (2), 89–97.
URL http://doi.acm.org/10.1145/1461928.1461951

Demuynck, T., Lauwers, L., 2009. Nash rationalization of collective choice over lotteries.
Mathematical Social Sciences 57, 1–15.

Fagin, R., 1973. Contributions to the model theory of finite structures. Ph.D. thesis, U.C.
Berkeley.

Fortnow, L., Homer, S., 2003. A short history of computational complexity. Bulletin of the
European Association for Theoretical Computer Science 80.

Galambos, A., 2004. Revealed preference in game theory. Ph.D. thesis, University of Min-
nesota.

Garey, M. R., Johnson, D. S., 1979. Computers and Intractability. W.H. Freeman and
Company.

19



Halpern, J. Y., 2008. Computer science and game theory. In: Durlauf, S. N., Blume, L. E.
(Eds.), The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke.

Houthakker, H. S., May 1950. Revealed preference and the utility function. Economica NS
17 (66), 159–174.

Immerman, N., 1982. Relational queries computable in polynomial time. In: 14th Sympo-
sium on Theory of Computation. ACM, pp. 147–152.

Immerman, N., 1999. Descriptive Complexity. Graduate Texts in Computer Science.
Springer.

Peleg, B., Tijs, S. H., 1996. The consistency principle for games in strategic form. Interna-
tional Journal of Game Theory 25, 13–34.

Ray, I., Snyder, S., 2003. Observable implications of Nash and subgame-perfect behavior
in extensive games. Tech. Rep. 2, Department of Economics, Brown University.

Ray, I., Zhou, L., 2001. Game theory via revealed preferences. Games and Economic Be-
havior 37, 415–424.

Richter, M. K., 1966. Revealed preference theory. Econometrica 34, 635–645.

Richter, M. K., 1971. Rational choice. In: Chipman, J. S., Hurwicz, L., Richter, M. K.,
Sonnenschein, H. (Eds.), Preferences, Utility, and Demand. Harcourt Brace Jovanovich,
pp. 635–645.

Richter, M. K., 1975. Rational choice and polynomial measurement theory. Journal of
Mathematical Psychology 12, 99–113.

Samuelson, P. A., 1938. A note on the pure theory of consumer’s behaviour. Economica 5,
61–71.

Sprumont, Y., 2000. On the testable implications of collective choice theories. Journal of
Economic Theory 93, 205–232.

Vardi, M. Y., 1982. Complexity of relational query languages. In: 14th Symposium on
Theory of Computation. ACM, pp. 137–146.

Yanovskaya, E., 1980. Revealed preference in non-cooperative games. Mathematical Meth-
ods in the Social Sciences 24 (13), in Russian.

20


