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Stockholm, Sweden. Email: Romeo.Tedongap@hhs.se.



1 Introduction

This paper explicitly derives the cross-sectional predictions of an intertemporal equilibrium asset

pricing model when aggregate consumption volatility is stochastic and investors have aversion

to both risk and expected downside losses. We show that an asset risk premium is not only

determined by covariation of returns with the market return and changes in market volatility, but

also by covariation of returns with three option payoffs: a cash-or-nothing option, a put option

on the market return and a call option on changes in market volatility. These options provide a

straightforward way for investors to act on their views of two of the most closely followed market

variables, the market return and changes in market volatility. We show that the cross-section of

stock returns reflects a premium for bearing undesirable exposures to these options, which we also

show are rational interpretations for downside risks.

Standard capital asset pricing models all suggest that an asset premium is a compensation for

the asset risk, where risk is understood as the covariance between the asset payoffs and the unex-

pected variations in priced factors at the marketplace. Examples of these factors are the market

return in the CAPM of Sharpe (1964) and Lintner (1965), and fundamentals such as the con-

sumption growth in the C-CAPM of Lucas (1978) and Breeden (1979), and both the consumption

growth and the welfare valuation ratio growth in the recursive utility model of Epstein and Zin

(1989) based on Kreps and Porteus (1978) preferences. Common to these models is that the in-

vestor has an equal treatment of risk across disappointing and satisfying market conditions, where

disappointing market conditions correspond to periods where the market return or the growth in

fundamentals falls below a reference threshold.

The asymmetric nature and treatment of risk has long been well-accepted among practitioners

and academic researchers (Roy 1952; Markowitz 1959), and recently has led to new developments

in asset pricing and financial risk management, such as the concept of the value-at-risk and the

expected shortfall, as well as axiomatic approaches to preferences that allow investors to place

greater weights on disappointing market conditions in their utility functions. These developments

include the lower-partial moment framework of Bawa and Lindenberg (1977), the prospect theory of

choice of Kahneman and Tversky (1979), and more recently the theory of disappointment aversion
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of Gul (1991), generalized by Routledge and Zin (2010) who embed them in the recursive utility

framework of Epstein and Zin (1989). These new theories suggest priced downside risks in the

capital market equilibrium.

Our study builds on generalized disappointment aversion (GDA) preferences. The disappointing

event (D) is endogenous to the model and corresponds to a situation where the market return

sufficiently falls and/or changes in market volatility sufficiently increase. The GDA investor exhibits

both risk aversion (i.e. aversion to regular betas on market return and on changes in market

volatility) and disappointment aversion (i.e. aversion to expected downside losses). We refer to the

combination of both risk and disappointment as the effective risk. We explicitly disentangle the

components of the asset effective risk premium that are due to risk exclusively, from those that are

due to disappointment exclusively, and from those that are due to the interaction between risk and

disappointment.

An investor with expected utility (henceforth EU) preferences requires two premiums to invest

in a risky asset. These two premiums are compensations for covariations of the asset payoff with the

market return, Cov (Rei , rW ), and with the changes in market volatility, Cov
(
Rei ,∆σ

2
W

)
. These two

premiums are exclusively due to risk aversion, since they are the only premiums required by a risk

averse but disappointment neutral investor. The GDA investor requires three additional premiums.

The first premium is a compensation for the covariance with the payoff of a binary cash-or-nothing

option, Cov (Rei , I (D)), where I (·) is the indicator function that takes the value 1 if the condition

is met and 0 otherwise. We show that this premium is exclusively due to disappointment aversion,

since it is the only premium required by a risk neutral but disappointment averse investor. The

second premium is a compensation for the covariance of the asset returns with a put option on the

market return, Cov (Rei , rW I (D)), and the third premium is a compensation for the covariance with

a call option on changes in market volatility, Cov
(
Rei ,∆σ

2
W I (D)

)
. These latter compensations are

not exclusively due to either risk aversion or disappointment aversion, as they are required if and

only if the investor is both risk averse and disappointment averse.

We explore the cross-sectional predictions of the model using all common stocks traded on

the NYSE, AMEX and NASDAQ markets covering the period from July 1963 to December 2010.
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The main results of the paper relate to the cross-sectional pricing of options on the market return

and on changes in market volatility. Our empirical methodology uses portfolio sorts on individual

stock exposures to these options, controlling for exposures to the market return and to changes

in market volatility. Across individual stocks, we see a wide dispersion in sensitivity to options,

which generates cross-sectional variation in the risk premia attributed to these factors. We further

use cross-sectional regressions of Fama and MacBeth (1973) to estimate these factor risk premia.

Our main finding is that options on the market return and on changes in the market volatility are

highly significant factors in the cross-section of stock returns.

The estimated signs and magnitudes of factor risk premia associated with options on the market

return and on changes in market volatility are all consistent with the theoretical implications. The

put option has a positive risk premium. Assets that covary positively with the put option are

undesirable because they tend to have low payoffs when an already low market return gets worse.

In economic terms, our estimates suggest that a well-diversified single exposure to the put option

on the market return has an annualized Sharpe ratio of 1.09 on average.

We also find that the cash-or-nothing option has a negative risk premium. An asset that covaries

negatively with the cash-or-nothing option is undesirable because it has lower expected payoffs than

usual when disappointment sets in, that is an asset with a low relative downside potential. We

estimate that a well-diversified single exposure to the cash-or-nothing option yields an annualized

Sharpe ratio of 0.51 on average. Finally, the call option carries a negative risk premium. Assets that

covary negatively with the call option are undesirable because they tend to have low payoffs when

an unusually high market volatility level further increases. Interpreting the estimated premium

shows that a well-diversified single exposure to the call option on changes in market volatility has

an annualized Sharpe ratio of 0.86 on average.

We complement the existing theoretical and empirical asset pricing literature on how asset

prices are affected by downside risks. Practically, downside risks can be assessed through downside

betas. These downside betas measure the comovements between asset payoffs and priced factors

conditional upon disappointing market conditions, similar to the market downside beta, measured

empirically and examined in the cross-section of stock returns by Ang, Chen and Xing (2006). In
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our setting, downside risks are interpretable as exposures to the put option on the market return

and to the call option on changes in market volatility. We explicitly derive the market downside

beta in terms of exposures to the market return, to changes in market volatility and to these two

options.

This paper also touches in particular on the recent literature on systemic risk. Brownlees and

Engle (2011) and Acharya et al. (2010) propose to measure systemic risk through the marginal

expected shortfall, which they estimate empirically and examine for the regulation of systemic

risk in US financial firms. In our setting, we interpret the exposure to the cash-or-nothing option

as the relative downside potential of the asset and show how it relates to the marginal expected

shortfall. Thus, instead of the regulation, we focus on the pricing of systemic risk. Furthermore,

being motivated by dynamic consumption-based equilibrium asset pricing and behaviorial decision

theory, our setup attempts to extend research on systemic financial risk onto many of the directions

advocated by Brunnermeier et al. (2010).

Ultimately, a dynamic asset pricing model with asymmetric preferences delivers a unified the-

oretical framework that can explain the empirical findings that asset sensitivities to the market

return and to changes in market volatility are priced (Ang, Hodrick, Xing and Zhang 2006; Adrian

and Rosenberg 2008), that the market downside beta is priced (Ang, Chen and Xing 2006; Hong

et al. 2006), and that the volatility downside beta and the relative downside potential of an asset

are priced. There is little or no empirical evidence regarding the two latter measures, and we view

this as an important contribution to the literature.

We also examine the empirical performance of our cross-sectional model on standard sets of

sorted portfolios: size, book-to-market, momentum and industry portfolios. Our results still com-

pare to those obtain on individual stocks. In terms of the pricing errors, our five-factor model with

market beta, volatility beta and exposures to the three options provides a significant improvement

over the standard CAPM model. It is comparable to the four-factor model of Carhart (1997), but

in contrast, it has the benefit of being motivated by dynamic consumption-based equilibrium asset

pricing and behaviorial decision theory.

We decompose the portfolio premia into parts attributable to each of the five factors from the
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model. We find that the three options account for non negligible parts of the total premium required

to invest in stocks, and that they are relevant for interpreting differences in risk compensation across

size, book-to-market, momentum and industry portfolios. We finally show that our results are

robust to different data subsamples, to alternative measures of market volatility and to alternative

definitions of the disappointment region.

The balance of the paper is organized as follows. In Section 2, we present and develop the

theoretical setup from which we derive the implied cross-sectional model. Section 3 quantifies

the factor premia in a calibrated consumption-based setting. Section 4 contains the empirical

assessment of the model, while Section 5 describes how different measures of downside risk are

related to our model. Section 6 concludes. An appendix contains additional material and proofs.

2 Theoretical Setup

In this section, we derive the cross-sectional implications of an asset pricing model where the

representative agent has recursive utility with asymmetric preferences over disappointing versus

satisfying economic situations.

2.1 Assumptions on Investors’ Preferences

We consider a representative investor with generalized disappointment aversion preferences (GDA)

of Routledge and Zin (2010). Following Epstein and Zin (1989) and Weil (1989), such an investor

derives utility from consumption, recursively as follows:

Vt =

{
(1− δ)C

1− 1
ψ

t + δ [Rt (Vt+1)]
1− 1

ψ

} 1

1− 1
ψ if ψ 6= 1

= C1−δ
t [Rt (Vt+1)]δ if ψ = 1.

(2)

The current period lifetime utility Vt is a combination of current consumption Ct, and Rt (Vt+1),

a certainty equivalent of next period lifetime utility. With GDA preferences the risk-adjustment
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function R (.) is implicity defined by:

R1−γ − 1

1− γ
=

∫ ∞
−∞

V 1−γ − 1

1− γ
dF (V )−

(
1

α
− 1

)∫ κR

−∞

(
(κR)1−γ − 1

1− γ
− V 1−γ − 1

1− γ

)
dF (V ) , (3)

where 0 < α ≤ 1 and 0 < κ ≤ 1. When α is equal to one, R reduces to expected utility (EU)

preferences, while Vt represents the Epstein and Zin (1989) recursive utility. When α < 1, outcomes

lower than κR receive an extra weight, decreasing the certainty equivalent. Thus, the parameter

α is interpreted as a measure of disappointment aversion, while the parameter κ is the percentage

of the certainty equivalent R such that outcomes below it are considered disappointing1.

With EU preferences, Hansen et al. (2008) derive the stochastic discount factor in terms of the

continuation value of utility of consumption, as follows:

M∗t,t+1 = δ

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ

= δ

(
Ct+1

Ct

)− 1
ψ

Z
1
ψ
−γ

t+1 , (4)

where

Zt+1 =
Vt+1

Rt (Vt+1)
=

(
δ

(
Ct+1

Ct

)− 1
ψ

RW,t+1

) 1

1− 1
ψ

, (5)

and where the second equality in (5) implies an equivalent representation of the stochastic discount

factor (4) derived by Epstein and Zin (1989), based on consumption growth and the simple gross

return RW,t+1 to a claim on aggregate consumption. We refer to this return as the market return,

which in general is unobservable. If γ = 1/ψ, equation (4) corresponds to the stochastic discount

factor of an investor with time-separable utility and constant relative risk aversion, where only

changes in the level of consumption determines an asset premium. Otherwise, there is an additional

premium to compensate for changes in the welfare valuation ratio.

Following Hansen et al. (2007) and Routledge and Zin (2010), the intertemporal marginal rate

1Notice that the certainty equivalent, besides being decreasing in γ, is increasing in α (for 0 < α ≤ 1),
and decreasing in κ (for 0 < κ ≤ 1). Thus α and κ are also contribute to effective risk aversion, but on
different forms than γ.
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of substitution of an investor with GDA preferences is given by:

Mt,t+1 = M∗t,t+1

(
1 + `I (Dt+1)

1 + `κ1−γEt [I (Dt+1)]

)
, (6)

where I (·) is an indicator function that takes the value 1 if the condition is met and 0 otherwise,

Dt+1 denotes the disappointing event Zt+1 < κ, and

` =
1

α
− 1

is interpretable as the degree of investor’s aversion to expected downside losses.

Notice that the logarithm of M∗t,t+1 can also be written:

m∗t,t+1 = ln δ − γ∆ct+1 −
(
γ − 1

ψ

)
∆zV,t+1 (7)

where the processes in the right-hand of equation (7) are defined by

∆ct+1 ≡ ln

(
Ct+1

Ct

)
= lnCt+1 − lnCt and ∆zV,t+1 ≡ ln

(
Vt+1

Ct+1

)
− ln

(
Rt (Vt+1)

Ct

)
(8)

and represent respectively the change in the log consumption level, or consumption growth, and

the change in the log welfare valuation ratio, or welfare valuation ratio growth. It turns out

from the first equality in equation (5) that the disappointing event Zt+1 < κ is equivalent to

∆ct+1 + ∆zV,t+1 < lnκ. Notice that the stochastic discount factor depends directly on current

consumption growth, and indirectly on future consumption growths through the welfare valuation

ratio growth.

The investor is worse off if the event Dt+1 prevails at time t + 1. In addition to risk aversion,

he has an aversion to this particular event if 0 < α < 1, which is disappointment aversion. The

investor will be better off if current consumption is high, and if the ratio of the continuation value

of his lifetime utility relative to current consumption is high as well. In this form, disappointing

economic conditions correspond to periods where the sum of growth rates of consumption and

welfare valuation ratio is less than a specific threshold, lnκ. In particular, if κ = 1, disappointing
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economic conditions correspond to periods where the sum of consumption and welfare valuation

ratio growth rates is negative.

2.2 Risk and Downside Risk Adjustments of Asset Returns

For every asset i in the economy, optimal consumption and portfolio choice by the representa-

tive investor induces a restriction on its simple gross return, Ri,t+1, that is implied by the Euler

condition:

Et [Mt,t+1Ri,t+1] = 1. (9)

Let Rf,t+1 and π1,t denote the risk-free simple gross return and the real-world disappointment

probability, respectively defined by:

Rf,t+1 =
1

Et [Mt,t+1]
and π1,t = Et [I (Dt+1)] . (10)

Alternatively, the Euler equation (9) implies that:

EQ
t

[
Rei,t+1

]
= 0, (11)

where Rei,t+1 = Ri,t+1 − Rf,t+1 denotes the excess return of asset i over the risk-free return, and

where EQ
t [·] denotes the conditional expectation operator associated with the effective risk-adjusted

density Qt,t+1 defined by:

Qt,t+1 =
Mt,t+1

Et [Mt,t+1]
. (12)

Effective risk stands for the combination of both risk and disappointment, where risk represents

regular covariances with consumption and welfare valuation ratio growths as usually understood,

and disappointment represents expected losses conditional upon the disappointing event.

Proposition 2.1 The Euler condition (9) can be re-written in one of the following forms:

µHi,t = `πH1,tµ
D
1i,t, µHi,t = (1− α)πH2,tµ

U
2i,t, πH1,tµ

D
1i,t = απH2,tµ

U
2i,t, (13)
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where the quantities µHi,t, µ
D
1i,t and µU2i,t are the expected excess return, the downside expected down-

side loss and the upside potential respectively, after risk corrections, evaluated under different eco-

nomically meaningful probability densities. They are defined by:

µHi,t ≡ EH
t

[
Rei,t+1

]
, µD1i,t ≡ ED

t

[
−Rei,t+1 | Dt+1

]
, µU2i,t ≡ EU

t

[
Rei,t+1 | St+1

]
, (14)

where St+1 denotes the satisfying event Zt+1 ≥ κ or equivalently ∆ct+1 + ∆zV,t+1 ≥ lnκ, and

where EH
t [·], ED

t [· | Dt+1] and EU
t [· | St+1] are respectively the conditional expectation operators

associated with the risk-adjusted density H∗t,t+1, the risk-adjusted downside density D∗t,t+1 and the

risk-adjusted upside density U∗t,t+1, defined by:2

H∗t,t+1 ≡
M∗t,t+1

Et

[
M∗t,t+1

] , D∗t,t+1 ≡
M∗t,t+1

Et

[
M∗t,t+1 | Dt+1

] , U∗t,t+1 ≡
M∗t,t+1

Et

[
M∗t,t+1 | St+1

] . (15)

The remaining quantities in (13), πH1,t and πH2,t, are respectively the risk-adjusted disappointment

and satisfaction probabilities defined by:

πH1,t ≡ EH
t [I (Dt+1)] and πH2,t ≡ EH

t [I (St+1)] = 1− πH1,t. (16)

The proof of Proposition 2.1 can be found in the appendix.

If the investor is disappointment neutral, α = 1, then H∗t,t+1 coincides with the effective risk-

neutral distribution Qt,t+1. Indeed, we have from the first equation in (13) that µHi,t = 0 if α = 1.

Notice that µD1i,t is the expected downside loss, adjusted for downside risk. The first equation

in (13) shows that the risk-adjusted expected excess return is proportional to the risk-adjusted

disappointment probability times the downside risk-adjusted expected downside loss, where the

coefficient of proportionality is the degree of loss aversion `. Disappointment averse investors

dislike assets with µD1i,t > 0 since they might face large losses in these assets when disappointment

2Since we have Et
[
H∗t,t+1

]
= 1, Et

[
D∗t,t+1 | Dt+1

]
= 1 and Et

[
U∗t,t+1 | St+1

]
= 1, then H∗t,t+1 can be

thought of as adjusting the overall distribution, D∗t,t+1 as adjusting the downside distribution (or the distri-
bution conditional upon disappointment), and U∗t,t+1 as adjusting the upside distribution (or the distribution
conditional upon satisfaction).
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sets in, and it requires an additional premium to get them holding these assets. This in turn

translates into a positive µHi,t.

We have shown that if the investor is disappointment averse, then the risk-adjusted expected

excess return µHi,t is not necessarily equal to zero, and it will not be in general. This is because

simple risk corrections to asset prices, which are driven by covariances of their payoffs with the

marginal utility of wealth, are not enough to compensate an investor who is particularly sensitive

to downside losses. The higher the disappointment aversion (the lower α or equivalently the higher

the degree of loss aversion `), the higher the relative compensation for expected downside losses.

We also notice that µU2i,t is the upside potential, adjusted for upside risk. The second equation in

(13), which we recall is equivalent to the first, shows that the risk-adjusted expected excess return

is proportional to the risk-adjusted satisfaction probability times the upside risk-adjusted upside

potential, where the coefficient of proportionality is one minus the coefficient of disappointment

aversion. Most importantly, this equation shows that investors require an additional premium

(µHi,t > 0) for holding assets with µU2i,t > 0. At a first glance, it might be hard to understand why

investors may require an additional premium to invest in an asset with good upside potential.

To understand this, we now refer to the third formulation of the Euler condition, the third

equation in (13). This equation shows that there is a no-arbitrage condition that relates expected

downside losses to the upside potential. It shows that the risk-adjusted disappointment probabil-

ity times the downside risk-adjusted expected downside loss is proportional to the risk-adjusted

satisfaction probability times the upside risk-adjusted upside potential, where the coefficient of

proportionality coincides with the coefficient of disappointment aversion. So, in equilibrium, assets

with good upside potential are exactly those with large expected downside losses. Where there

is an upside potential, there are always expected downside losses. Upside potential and expected

downside losses are just the opposite sides of the same coin.
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2.3 Cross-Sectional Implications of GDA Preferences

2.3.1 Substituting out Consumption

It is also important to notice from the second equality in equation (5) that the log market return

is related to consumption growth and to the welfare valuation ratio growth through

rW,t+1 = − ln δ + ∆ct+1 +

(
1− 1

ψ

)
∆zV,t+1. (17)

In this case, equation (7) becomes

m∗t,t+1 = (1− γ) ln δ − γrW,t+1 −
(
γ − 1

ψ

)
∆zV,t+1, (18)

and the disappointing event Zt+1 < κ is equivalent to rW,t+1 + (1/ψ) ∆zV,t+1 < ln (κ/δ).

This latter equation reveals that, if the elasticity of intertemporal substitution is infinite, then

the logarithm of M∗t,t+1 reduces to m∗t,t+1 = (1− γ) ln δ − γrW,t+1, and the disappointing event

Dt+1 is just equivalent to the market log return falling below a fixed specific threshold given by

investor’s preferences, rW,t+1 < ln (κ/δ). So, for a representative investor who perfectly substitutes

out consumption through time, the market return is the only factor determining both systematic

risk and disappointment.

As we pointed out earlier, the market return rW,t is not directly observed by the econometrician.

The return to a stock market index is sometimes used to proxy for this return as in Epstein and

Zin (1991). Also, the welfare valuation ratios zV,t ≡ ln (Vt/Ct) and zR,t ≡ ln (Rt (Vt+1) /Ct) are

unobservable. Following Hansen et al. (2008) and Bonomo et al. (2011), we can exploit the dynamics

of aggregate consumption growth and the recursion (2) in addition to the definition of the certainty

equivalent (3) to solve for the unobserved welfare valuation ratios.

From equation (17), it follows that stochastic volatility of aggregate consumption growth is a

sufficient condition for stochastic volatility of the market return. In all what follows, this additional

assumption is coupled with our assumption on investors’ preferences. More specifically, assume for

example that the logarithm of consumption follows a heteroscedastic random walk as in Bonomo
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et al. (2011), were the stochastic volatility of consumption growth is an AR(1) process that can

be well-approximated in population by a two-state Markov chain as shown in Garcia et al. (2008).

Then, it can be shown that the welfare valuation ratios satisfy

zV,t = ϕV 0 + ϕV σσ
2
W,t and zR,t = ϕR0 + ϕRσσ

2
W,t (19)

were σ2
W,t ≡ V art [rW,t+1] is the conditional variance of the market return, and where the drift

coefficients ϕV 0 and ϕR0 and the loadings ϕV σ and ϕRσ depend on investor’s preference parameters

and on parameters of the dynamics of consumption volatility. In this case, equation (18) becomes

m∗t,t+1 = (1− γ) ln δ∗ − γrW,t+1 −
(
γ − 1

ψ

)
ϕV σ∆σ2

W,t+1, (20)

and the disappointing event Zt+1 < κ is equivalent to rW,t+1 + (1/ψ)ϕV σ∆σ2
W,t+1 < ln (κ/δ∗),

where ∆σ2
W,t+1 ≡ σ2

W,t+1 − ϕσ2
W,t and where

ln δ∗ = ln δ +
1

ψ
(ϕV 0 − ϕR0) and ϕ =

ϕRσ
ϕV σ

.

Our definitions and notations for ∆zV,t+1 and ∆σ2
W,t+1 presume that zR,t ≈ zV,t and ϕ ≈ 1. We

later illustrate in a calibration exercise that this indeed is the case. This shows that changes

in the welfare valuation ratio can empirically be proxied by changes in stock market volatility,

where volatility can be estimated using a generalized autoregressive conditional heteroscedasticity

(GARCH) model, can be computed from high-frequency index returns (realized volatility), or can

be measured by the option implied volatility (V IX).

It should finally be noted that the loading coefficient ϕV σ of the welfare valuation ratio onto

the market volatility must be negative to be consistent with the empirical evidence reported by

Bansal et al. (2005) that asset markets dislike macroeconomic uncertainty, and also to corroborate

the theoretical predictions of long-run risks models featuring a time-varying consumption volatility

process. In all what follows, we take as given that ϕV σ < 0 and will show later in the calibration

assessment that this important theoretical implication of the model is met.

12



2.3.2 Cross-Sectional Representation of Expected Returns

Since the three equations in (13) are all equivalent, analyzing the cross-section of asset returns

requires only one of them, and we will then focus on the first equation from now on. In order

to derive the implied cross-sectional model in a linear beta form as common in the cross-sectional

asset pricing literature, we consider the following approximations:

H∗t,t+1 ≈ 1 + θ∗t
(
m∗t,t+1 − Et

[
m∗t,t+1

])
D∗t,t+1 ≈ 1 + θ∗1,t

(
m∗t,t+1 − Et

[
m∗t,t+1 | Dt+1

]) (21)

where the coefficients θ∗t and θ∗1,t are positive and ensure that the volatility and the downside

volatility of M∗t,t+1 remain unchanged under the first and the second approximations respectively.

Notice that the risk-adjusted expected excess returns µHi,t may be written as follows:

µHi,t = µi,t + Covt
(
H∗t,t+1, R

e
i,t+1

)
= µi,t − γθ∗t σiW,t −

(
γ − 1

ψ

)
ϕV σθ

∗
t σiX,t

(22)

where µi,t ≡ Et

[
Rei,t+1

]
is the expected excess return, while σiW,t ≡ Covt

(
Rei,t+1, rW,t+1

)
denotes

the covariance between excess returns and the market return, and σiX,t ≡ Covt

(
Rei,t+1,∆σ

2
W,t+1

)
denotes the covariance between excess returns and changes in market volatility.

We show that the risk-adjusted expected downside loss µD1i,t may be written

µD1i,t = −µi,t −
1

π1,t

[(
1 + γθ∗1,tµ1W,t +

(
γ − 1

ψ

)
ϕV σθ

∗
1,tµ1X,t

)
σiD,t

−γθ∗1,tσiWD,t −
(
γ − 1

ψ

)
ϕV σθ

∗
1,tσiXD,t

] (23)

where σiWD,t ≡ Covt

(
Rei,t+1, rW,t+1I (Dt+1)

)
and σiXD,t ≡ Covt

(
Rei,t+1,∆σ

2
W,t+1I (Dt+1)

)
and

σiD,t ≡ Covt
(
Rei,t+1, I (Dt+1)

)
denote covariances between excess returns and three outcomes that

are contingent to the disappointing event, and where the quantities µ1W,t ≡ Et [rW,t+1 | Dt+1] and

µ1X,t ≡ Et

[
∆σ2

W,t+1 | Dt+1

]
represent the downside means of the market return and changes in

market volatility, respectively.
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Substituting (22) and (23) into the first equation in (13) and solving for expected excess returns,

we show that the cross-sectional risk-return tradeoff may be written in linear covariance form as

µi,t ≈ pW,tσiW,t + pX,tσiX,t + pD,tσiD,t + pWD,tσiWD,t + pXD,tσiXD,t = p>F,tσiF,t (24)

where the corresponding risk prices are given by

pW,t =
θ∗t

1 + `π1,t (1 + ηt)
γ and pX,t =

θ∗t
1 + `π1,t (1 + ηt)

(
γ − 1

ψ

)
ϕV σ,

pD,t = − ` (1 + ηt)

1 + `π1,t (1 + ηt)

(
1 + γθ∗1,tµ1W,t +

(
γ − 1

ψ

)
ϕV σθ

∗
1,tµ1X,t

)
,

pWD,t =
` (1 + ηt) θ

∗
1,t

1 + `π1,t (1 + ηt)
γ and pXD,t =

` (1 + ηt) θ
∗
1,t

1 + `π1,t (1 + ηt)

(
γ − 1

ψ

)
ϕV σ.

(25)

The quantity ηt represents the relative disappointment probability spread given by

ηt ≡
πH1,t
π1,t
− 1 ≈ γθ∗t (µW,t − µ1W,t) +

(
γ − 1

ψ

)
ϕV σθ

∗
t (µX,t − µ1X,t) , (26)

where µW,t ≡ Et [rW,t+1] and µX,t ≡ Et
[
∆σ2

W,t+1

]
are the means of the market return and changes

in market volatility, respectively.

Equation (24) corresponds to a linear multifactor model representation of expected excess re-

turns. In the unrestricted case, we have a five-factor model. In addition to the market return

and changes in market volatility which are shown to be cross-sectional pricing factors in Ang,

Hodrick, Xing and Zhang (2006) and Adrian and Rosenberg (2008), three additional factors com-

mand a risk premium. These factors are all payoffs which are contingent to the disappointing

event, making them interpretable as options. Recalling that ϕV σ < 0, the disappointing event,

rW,t+1 +(1/ψ)ϕV σ∆σ2
W,t+1 < ln (κ/δ∗), may occur due to a fall in the market return or an increase

in changes in market volatility, or both. This means that the three options mature in-the-money

if the market return falls or if changes in market volatility increase. For this reason, depending on

the nature of option payoff, they can be seen as either put options on the market return or call

options on changes in market volatility.

More specifically, the factor I (Dt+1) is a binary cash-or-nothing option. It is both interpretable

14



as either a binary cash-or-nothing put on the market return or a binary cash-or-nothing call on

changes in market volatility. The factor rW,t+1I (Dt+1) would then be a put option on the market

return, since the option payoff depends on the market return. Similarly, the factor ∆σ2
W,t+1I (Dt+1)

would be seen as a call option on changes in market volatility, since the contingent payoff depends

on changes in market volatility. We further characterize these options in some special cases.

Consider the restricted case where ψ = ∞. We have already shown that the downside event

reduces to rW,t+1 < ln (κ/δ), and now the relative disappointment probability spread also reduces

to ηW,t = γθ∗t (µW,t − µ1W,t), where µ1W,t = Et [rW,t+1 | rW,t+1 < ln (κ/δ)]. The restriction ψ = ∞

implies that pX,t = pXD,t = 0. Thus, changes in market volatility and the call option are not priced.

The cross-sectional model then reduces to a three-factor model with the market return, the binary

cash-or-nothing option and the put option. The associated risk prices are given by

pW,t =
θ∗t

1 + `π1,t (1 + ηW,t)
γ,

pD,t = −
` (1 + ηW,t)

1 + `π1,t (1 + ηW,t)

(
1 + γθ∗1,tµ1W,t

)
and pWD,t =

` (1 + ηW,t) θ
∗
1,t

1 + `π1,t (1 + ηW,t)
γ.

(27)

To further illustrate our interpretation of the new factors in the special case ψ = ∞, assume

for example that κ = δ. Then, the disappointment event becomes rW,t+1 < 0 and we have

I (Dt+1) = I (Wt+1 < Wt) and − rW,t+1I (Dt+1) = max (wt − wt+1, 0) ≈ max (Wt −Wt+1, 0)

Wt
,

where Wt denotes the aggregate wealth and wt = lnWt. Clearly, this shows that our two option

factors represent a regular binary cash-or-nothing put option and a conventional European put

option on aggregate wealth, with a maturity of one period and a strike equal to current wealth.

It is important to determine what characteristic of investors’ behavior is responsible for a com-

mand of a premium related to a specific factor at the market place. Equations (25) and (27) reveal

that pW,t 6= 0 if and only if γ 6= 0, regardless of the disappointment aversion parameter `. This

shows that compensation for the covariance with the market return is exclusively due to investors’

risk aversion. The asset pricing literature generally agrees on investors’ risk aversion parameter

γ > 1. Taking this as given, it then follows from equation (25) that pX,t 6= 0 if and only if ψ 6=∞,
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regardless of the disappointment aversion parameter `. Thus, we can argue that compensation for

the covariance with changes in market volatility is exclusively due to imperfect intertemporal sub-

stitution of consumption. Investor’s risk aversion (γ > 1) and imperfect intertemporal substitution

of consumption (ψ <∞) both imply that pW,t > 0 and pX,t < 0. Thus, consistent with the existing

theoretical and empirical literature (see for example Ang, Hodrick, Xing and Zhang 2006; Adrian

and Rosenberg 2008), investors require a premium for a security that has a low return when the

market return is low (σiW,t > 0), but are willing to pay a premium for a security that pays off when

changes in market volatility are high (σiX,t > 0).

On the other hand, equations (25) and (27) also reveal that pD,t 6= 0 if and only if ` 6= 0,

regardless of other preference parameters. This shows that compensation for the covariance with

the cash-or-nothing option is exclusively due to disappointment aversion. This model-implied

premium when ` > 0 stems from the preference of investors for securities with high returns when

the disappointing event occurs (σiD,t > 0).

We also observe that, pWD,t 6= 0 if and only if both γ 6= 0 and ` 6= 0. This shows that neither risk

aversion alone, nor disappointment aversion alone suffices to explain the requirement for investors to

be compensated for the covariance with the put option on the market return. Similarly, presuming

that γ > 1, then pXD,t 6= 0 if and only if both ψ 6=∞ and ` 6= 0. It turns out that neither imperfect

intertemporal substitution of consumption alone, nor disappointment aversion alone suffices to

explain the requirement for investors to be compensated for the covariance with the call option on

changes in market volatility. Investor’s risk aversion (γ > 1), imperfect intertemporal substitution

of consumption (ψ < ∞) and disappointment aversion (` > 0) all imply that pWD,t > 0 and

pXD,t < 0. This shows that investors require a premium for a security that has a low return when

a low market return in a disappointing state further decreases (σiWD,t > 0), and are willing to pay

a premium for a security that pays off when large changes in market volatility in a disappointing

state further increase (σiXD,t > 0).

The cross-sectional risk-return relation (24) is finally equivalent to:

µi,t ≈ λ>F,tβiF,t (28)
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where βiF,t is the vector containing the multivariate regression coefficients of asset excess returns

onto the factors, and λF,t is the vector of factor risk premiums, respectively given by

βiF,t = Σ−1
F,tσiF,t and λF,t = ΣF,tpF,t (29)

where σiF,t is the vector of covariances of the asset excess return with the priced factors, and where

ΣF,t is the factor covariance matrix. It is important to note that if the covariance between the

daily return on the market and daily changes in the volatility of the market (Cov(rW,t,∆σ
2
W,t)) is

negative or sufficiently close to zero3, than the signs of the elements of λF,t are the same as of the

corresponding elements of pF,t. This beta representation nests both the five-factor case (ψ 6= ∞)

and the three-factor case (ψ = ∞). An extensive empirical investigation of these betas for the

cross-section of stock returns will be carried out in subsequent sections.

3 Calibration Assessment

In this section, we calibrate an endowment economy and discuss the major quantities derived

analytically in previous sections. The focus will be on the factor risk premia λF implied by the

model, which we will further compare to the values estimated in an extensive cross-sectional study

using actual data in Section 4.3. We follow Bonomo et al. (2011) in modeling and calibrating

the endowment process, and solving for asset prices in closed form. We assume that consumption

growth is unpredictable and that its conditional variance fluctuates according to a Markov variable

st, which can take a different value in each of the N states of nature of the economy. The sequence

st evolves according to a transition probability matrix P defined as:

P> = [pij ]1≤i,j≤N , pij = Prob (st+1 = j | st = i) . (30)

As in Hamilton (1994), let ζt = est , where ej is the N × 1 vector with all components equal to zero

but the jth component equals one.

3The later is supported in our data.
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Formally, consumption growth is modeled as follows:

∆ct+1 = µc + σtεc,t+1 (31)

where εc,t+1 | 〈εc,τ , τ ≤ t; ζm,m ∈ Z〉 ∼ N (0, 1) and where σt =
√
ω>c ζt is the volatility of con-

sumption growth. The scalar µc is the expected consumption growth, and the vector ωc contains

consumption volatility in each state of nature, where the component j of a vector refers to the

value in state st = j. Given these endowment dynamics, we solve for welfare valuation ratios in

closed form, which we combine to consumption growth to derive the endogenous market return and

variance processes.

To calibrate the model, we assume two states for the Markov chain so that consumption con-

ditional variance σ2
t behaves like an AR(1) process with mean µσ, persistence φσ, volatility σσ,

positive skewness and zero excess kurtosis. The two states of the economy naturally corresponds

to a low (L) and a high (H) volatility states. We calibrate the consumption process at the monthly

decision interval to match actual sample mean and volatility of real annual US consumption growth

from 1930 to 2010.

The mean of consumption growth is calibrated to µc = 0.15× 10−2 and its volatility, which is

equal to
√
µσ, is calibrated to

√
µσ = 0.7305 × 10−2. The volatility of consumption volatility is

calibrated to σσ = 0.6263× 10−4 and we set the persistence to φσ = 0.995 in our benchmark case.

We will further study the sensitivity of the quantities when we vary the persistence φσ as well as

preference parameters. In our benchmark case, the implied state values of expected consumption

growth are µc (L) = µc (H) = 0.15%. The state values of consumption volatility are σ (L) = 0.46%

and σ (H) = 1.32%. The state transition probabilities are pLL = 0.9989 and pHH = 0.9961, and

the corresponding long-run probabilities are πL = 0.7887 and πH = 0.2113.

We set the value of the risk aversion parameter γ to 3.75 and the elasticity of intertemporal

substitution ψ to 1.5, and we consider several scenarios were we vary the values of the other

preference parameters. In our benchmark scenario, we consider δ = 0.9979, α = 0.3 and κ = 0.992.

All the scenarios are shown in Table 1. The model-implied annualized (time-averaged) mean,
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volatility and first-order autocorrelation of consumption growth are respectively 1.80%, 2.21% and

0.25%, and are consistent with the observed annual values of 1.88%, 2.21% and 0.46%, respectively.

In Panel A, we observe that across all scenarios, the annualized (time-averaged) mean risk-

free rate varies between 0.74% and 1.97%, and the corresponding volatility between 1.69% and

4.78%. These scenarios’ values are consistent with the estimated risk-free rate mean of 1.21% and

volatility 4.10%. In our base case, the values are 1.31% and 2.46%. Panel B shows that the welfare

valuation ratio loads negatively on market volatility, consistent with the economic intuition that

asset values and consequently investor’s wealth and welfare fall in periods of high uncertainty in

financial markets. Panel C shows that the disappointment probability is higher in periods of high

volatility versus low volatility periods. Also, increasing the parameter κ increases the number

of disappointing outcomes and consequently the disappointment probability. In our base case,

the disappointing event has a probability of 1.22% in the low volatility state, 21.05% in the high

volatility state and 5.41% in the long run.

Panel D shows monthly model-implied factor risk premia. These values will be confronted to

their data counterparts estimated in the next empirical section. The market factor risk premium

λW is larger in the high volatility state and smaller in the low volatility state. The expected market

risk premium ranges between 0.0051 and 0.0075. Similarly, the factor premium associated to the

cash-or-nothing option λD is larger in the high volatility state versus the low volatility states. Its

expected value ranges from -0.2560 to -0.1175. This premium is negative as the relative downside

potential of a risky asset is negative, leading to a positive compensation. To the contrary, the

volatility factor risk premium λX is larger in the low volatility state versus the high volatility state,

and its expected value ranges between -1.16E-5 to -6.29E-6. The volatility factor risk premium is

also negative as a risky asset with negative volatility beta commands a positive volatility premium.

The other factor risk premia are associated to the put option on the market return (λWD) and the

call option on changes in market volatility (λXD). Their expected values ranges between 0.0031

and 0.0061, and between -1.12E-5 and -5.23E-6. In the next section, we empirically estimate these

average risk premia using observed individual stock returns and compare the estimated values to

the model-implied values.
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4 Empirical Assessment

The cross-sectional risk-return relation (24) is in the centre of our empirical assessment:

µi,t ≈ pW,tσiW,t + pX,tσiX,t + pD,tσiD,t + pWD,tσiWD,t + pXD,tσiXD,t (32)

where σif,t denotes the covariance between the excess return of asset i and factor f , while pf,t is

the price of risk given in (25) for different factors. In the general case there are five priced factors

given by

F>t =

(
rW,t ∆σ2

W,t I (Dt) rW,tI (Dt) ∆σ2
W,tI (Dt)

)
. (33)

We refer to this as the GDA5 (generalized disappointment aversion) model throughout the rest of

the paper. In the restricted case ψ = +∞, the number of risk factors reduces to three (the GDA3

model):

F>t =

(
rW,t I (Dt) rW,tI (Dt)

)
. (34)

So far, our definition of the disappointing event has been very general (defined in terms of

the parameters of the model). However, we have to be more specific to be able to carry out the

empirical analysis. We have decided to define the disappointing event as simply as possible: Dt

corresponds to rW,t < 0, i.e. when the log market return falls below zero. In the case of the GDA3

model, the downside event is rW,t < ln (κ/δ), so our definition used in the empirical analysis is

equal to assuming κ = δ. In the more general case of the GDA5 model, the disappointing region is

defined as rW,t + (1/ψ)ϕV σ∆σ2
W,t < ln (κ/δ∗). So, assuming rW,t < 0 means that we disregard the

second term from the left hand side of the inequality, and assume κ = δ∗. We have to emphasize

that our results do not hinge on this particular definition of the disappointing event. In the section

of robustness checks (4.3.3) we investigate how the results change if disappointment regions of the

form4

rW,t − a
σrW
σ∆σ2

W

∆σ2
W,t < b (35)

4This form corresponds closely to the definition of the downside event in the case of the more general
GDA5 model. We consider different values of the parameters a and b.
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are considered. We conclude that our results are very robust to changes in the definition of Dt.

4.1 Data

Following common practice in the literature, we test our model using all common stocks (CRSP

share codes 10 and 11) traded on the NYSE, AMEX and NASDAQ markets. The source of the

data is the Center for Research in Security Prices (CRSP). The analysis covers the period between

July, 1963 and December, 2010.

The market return is the value-weighted average return on all NYSE, AMEX, and NASDAQ

stocks from CRSP, while the risk free rate is the one-month US Treasury bill rate from Ibbotson

Associates. Both time series are obtained from Kenneth R. French’s data library5. To follow the

implications of our theoretical model as closely as possible, we use the log market return (not excess

return) in our empirical tests. However, it is worth noting that the results are basically unchanged

when the simple market excess return is used instead.

In order to be able to test the GDA5 model, we need to measure changes in the volatility of

the market return. Several approaches have been used for measuring market volatility in studies

analyzing the cross-section of stock returns: Ang, Hodrick, Xing and Zhang (2006) use the VIX

index, Adrian and Rosenberg (2008) estimate a model with conditional heteroskedasticity, while

Bandi et al. (2006) use realized volatility. We have chosen to use the model based approach in

our main specification. The most important advantage of this approach is that it lets us use the

entire sample period6. We obtain our measure of market volatility by fitting an EGRACH model

(introduced by Nelson; 1991) to the daily market return series using the whole sample period. The

exact model specification and the coefficient estimates are presented in Table 2. In the section

for robustness checks (4.3.3), we show how the results change if alternative measures of market

volatility are considered.

When presenting our results, we will compare the performance of our model to the four factor

model of Carhart (1997). Daily return series of the factors were collected from Kenneth R. French’s

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
6We can obtain daily VIX and realized market volatility data starting from 1986 only.
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data library.

4.2 Portfolio sorts

A lot of studies analyzing the cross-section of stock returns use portfolio sorts as their main empirical

tool. They sort stocks into portfolios based on a specific measure of risk, and then examine the

patterns in the average returns of these portfolios. We also start by presenting results of portfolio

sorts.

We closely follow the methodology of Ang, Chen and Xing (2006): at the end of each one-year

period at month t, we calculate realized covariances from (32) using daily data over the previous

12-month period. For each stock, we also calculate the average monthly excess return over the same

12-month period. Stocks are then sorted into five quintiles based on their realized covariances, and

the average returns on these quintile portfolios are calculated. We repeat the same procedure for

the next month, and continue throughout the whole sample period. Finally, we take the time-series

average of the portfolio returns. According to Ang, Chen and Xing (2006) this use of overlapping

information is more efficient, but induces moving average effects. To account for this, we report

t-statistics that are adjusted using 12 Newey and West (1987) lags7.

4.2.1 Sorting on realized covariances

The first five columns of Table 4 present average annualized returns of portfolios created by sorting

stocks based on their realized covariances with our factors. The first column shows the results when

σiW = Cov(Rei,t, rW,t) is used. Note that this is numerically equivalent to sorting on the standard

CAPM beta8 . We can see a monotonically increasing pattern between realized average returns

and realized beta for both the equal- and value-weighted portfolios. This is consistent with pW > 0

indicated by theory. Also, these findings (both the pattern and the size of the spread) are in line

with the literature (see for example Ang, Chen and Xing; 2006 or Ruenzi and Weigert; 2011).

7Note also, that the results of the portfolio sorts are essentially the same if we use non-overlapping
one-year periods. The results are available upon request.

8Sorting on σiW = Cov
(
Rei,t, rW,t

)
is equivalent to sorting on βiCAPM from the regression Rei,t = αi +

βiCAPM · rW,t + εit, since βiCAPM =
Cov(Rei,t,rW,t)
V ar(rW,t)

, and the denominator does not vary in the cross-section.
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In the second column, stocks are sorted into portfolios based on their covariance with the

binary cash-or-nothing option, σiD = Cov(Rei,t, I(Dt)). As it is shown in the appendix (A.1), this is

numerically equivalent to sorting on E[Rei,t | Dt]−E[Rei,t], the relative downside potential. A factor

like this has not been studied in the cross-section of stock returns so far. An asset with a low σiD

is undesirable because it has lower expected payoffs than usual when disappointment sets in. So,

investors need compensation for holding stocks with low relative downside potential. In line with

this reasoning, we can see monotonically decreasing returns when we go from low to high values of

the risk measure. The difference ”H-L” is significant at the 1% level for equal-weighted portfolios,

and at 10% level for the value-weighted portfolios.

The third column presents portfolios when stocks are sorted on their covariance with the payoff

of the put option on the market return, σiWD = Cov(Rei,t, rW,tI(Dt)). Assets that covary positively

with the put option are undesirable because they tend to have low payoffs when the market is doing

bad. In line with this and the positive sign on pWD, we can see a monotonically increasing pattern

across portfolios. This measure produces the largest spread in portfolio returns if we consider

equal-weighted portfolios.

The fourth covariance risk measure is σiX = Cov(Rei,t,∆σ
2
W,t), i.e. the covariance with the

change in the variance of the market. Factors similar to this have already been studied in the

context of the cross-section of stock returns (e.g. Ang, Hodrick, Xing and Zhang (2006)). In line

with their results and with pX < 0, we find that stocks with high sensitivities to innovations in

market variance have low average returns.

The fifth column shows the results if the stocks are sorted on their covariance with the payoff

of the call option on changes in market volatility, σiXD = Cov(Rei,t,∆σ
2
W,tI(Dt)). So far, not

much attention has been devoted to this factor in the literature. Theory indicates that pXD <

0. Accordingly, wee can see monotonically decreasing returns in Table 4, i.e. stocks with high

sensitivities to innovations in market variance in bad times have low average returns. Note, that

this beta measures produces the largest spread in portfolio returns if we consider value-weighted

portfolios, and the ”H-L” difference is highly statistically significant regardless of the weighting

scheme.
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The general conclusion is that all the five risk measures generate monotonic patterns in the

average returns of sorted portfolios. Moreover, these patterns are in line with the signs on the

prices of risk suggested by theory (25). However, there is one problem with these measures that

makes it hard to disentangle their effects: they are highly correlated with each other. First, let us

concentrate on the upper left corner of Table 3. The correlations between σiW , σiD, and σiWD are

very high, even the lowest (in magnitude) correlation is -0.86. This is in line with the literature:

both Ang, Chen and Xing (2006) and Post et al. (2010) find that the regular CAPM beta and

measures of downside market risk are highly correlated9. Also the two measures of sensitivity to

changes in market variance (σiX and σiXD) have a correlation of 0.68.

One way to disentangle the effect of different factors is to calculate the risk measures together,

in a multivariate framework, instead of calculating them separately.

4.2.2 Sorting on multivariate betas

Instead of calculating the realized covariances with our factors separately, we run the following

regression (corresponding to our GDA5 model)

Rei,t = αi + βiW · rW,t + βiWD · rW,tI(Dt) + βiD · I(Dt) + βiX ·∆σ2
W,t + βiXD ·∆σ2

W,tI(Dt) + εit , (36)

and use the estimated βif -s in the same sorting exercise (following the same methodology) as above.

Note that estimating betas from the above regression exactly corresponds to the first equation in

(29). In this subsection we are focusing only on the betas calculated using all the five factors from

the GDA5 model. However, we would like to note that if the first three betas (βiW , βiWD, and

βiD) are calculated from the GDA3 model, the results are very similar. For all the three factors,

the correlation between βiF calculated from the GDA3 and the GDA5 models is 0.99.

Table 3 also shows the average cross-sectional correlations between the betas calculated from

the regression (36). The general message is that the correlations between these betas are much

lower in magnitude than the correlations we have seen in between the σif measures. It is important

to note though, that σ and β corresponding to the same factor can be very different, because now

9We will discuss in Section 5 the relationship between our measures and measures of downside market
risk that have been used in the literature.
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the measures are calculated together.

The results of the sorting exercise using these betas are presented in the last five columns of

Table 4. As we have pointed out earlier, the signs of the λ-s in (28) are the same as the signs of

the corresponding p-s, so we expect the same patterns that we have seen when sorting based on

realized covariances. βiW generates a modest spread across the portfolios, but the ”H-L” difference

is not significant at the 5% level. When sorting stocks into portfolios based on βiD, the average

return on these portfolios seem to be constant. This means that βiD fails to create the desired

spread in the average returns. βiWD, on the other hand, is able to create a nice monotonically

increasing pattern in the average returns. The ”H-L” difference is statistically significant for both

the equal- and the value-weighted portfolios. When stocks are sorted based on their sensitivity to

changes in the variance of the market (βiX), we can see the decreasing pattern suggested by the

theory. The difference between portfolio 5 and portfolio 1 is significant at the 5% level for both

weighting schemes. Lastly, βiXD also delivers the decreasing pattern predicted by the theory, with

highly significant ”H-L” differences.

All in all, we can conclude that apart from βiD, all the betas create the expected patterns in

the average returns of sorted portfolios. However, sorting stocks into portfolios is not the most

appropriate tool in this case, since our model implies a specific relationship (the GDA3 or GDA5

model), and not one specific measure. Thus, we have to estimate the effects of several measures

of risk at the same time. Based on this argument, our main tool for the empirical analysis will be

Fama-MacBeth (1973) (FM) regressions.

4.3 Fama-MacBeth regressions

The starting point is the beta-form of our cross-sectional risk-return relation (28). Calculating

the betas from this relationship (βiF,t = Σ−1
F,tσiF,t) is numerically equivalent to running the time-

series regression (36) for each asset i in the first stage of the FM procedure. The second stage

of the FM procedure (the cross-sectional regressions) corresponds to estimating the relationship

µi,t ≈ λ>F,tβiF,t. As the result of the Fama-MacBeth procedure, we will obtain the average lambdas

over the sample period (E [λF,t]).
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We would like to take into account the conditional nature of the cross-sectional relationship in

(28). We follow the spirit of Lewellen and Nagel (2006), and instead of trying to determine the

appropriate set of conditioning variables, we use short-window regressions to calculate the factor

loadings. At the end of each one-year period at month t, we estimate the conditional betas βiF,t

using daily data from the last twelve months (t − 11, ..., t). This approach will result again in

overlapping information when calculating the conditional factor loadings. To account for this, we

report Newey-West (1987) adjusted standard errors in all our tests10.

4.3.1 Individual stocks as base assets

The majority of asset pricing studies testing expected return relations in the cross section use

portfolios. However, Ang et al. (2010) have recently argued that creating portfolios destroys im-

portant information and leads to larger standard errors. They conclude their study by pointing out

that using individual stocks permits more efficient tests of whether factors are priced, and there

should be no reason to create portfolios. Cremers et al. (2011), Lewellen (2011) and Ruenzi and

Weigert (2011) are recent examples focusing on individual stocks as base assets in Fama-MacBeth

regressions. We follow this strand of the literature by considering individual stocks from the CRSP

universe as base assets for the FM regressions. We consider these as our main results. However,

we also present results with portfolios as base assets in Section 4.3.2.

Another decision to make is whether to use contemporaneous returns (i.e. returns over the

same interval on which the conditional betas are estimated) in the cross-sectional regressions, or

to use future returns (i.e. returns after the period when betas are estimated). Ang, Hodrick,

Xing and Zhang (2006) argue that in order to have a factor risk explanation, there should be

contemporaneous patterns between factor loadings and average returns. There are numerous studies

in the asset pricing literature focusing on this contemporaneous relationship (e.g. Ang, Chen and

Xing (2006), Cremers et al. (2011), Fama and MacBeth (1973), Lewellen and Nagel (2006) and

Ruenzi and Weigert (2011), among others). In line with this literature, we obtain our main results

using this contemporaneous approach: at every month t, we relate the conditional betas to the

10Note again, that the results are essentially the same if we use non-overlapping one-year periods. The
results are available upon request.
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average monthly excess returns over the same period on which the betas are estimated (months

t− 11, ..., t).

Results from analyzing the contemporaneous relationship between factor loadings and returns

using individual stocks as base assets are presented in Table 5. Our theory implies that there

should be no constant in the cross-sectional regressions. However, since there is no consensus in the

empirical literature whether to include the constant or not, we report our specifications both with

and without the constant term. The top panel of Table 5 presents the lambda estimates together

with their statistical significance and the adjusted R2 for the given model (where applicable). The

lower panel of the table tries to give a picture about the economic significance of the results. It

displays average annualized Sharpe ratios of well-diversified single exposures to the given factors.

These are hypothetical portfolios that are exposed to the risk coming from only one of the factors,

and are immune to the risk represented by the other factors. To have a benchmark in mind, the

Sharpe ratio of the market portfolio using the same methodology is 0.557.

The first two columns of Table 5 correspond to the basic CAPM, where the only priced factor

is the market return. In both cases (with and without a constant) we see a significant positive

lambda on the market factor. We note also, that the constant is significant at the 10% level when

included in the estimation.

Let us focus now on the results from the GDA5 model, presented in columns 5 and 6. We

consider these as the main results of our empirical investigation. When the constant is included, all

the five lambda estimates are significant at the 1% level, and the estimated constant is no longer

significant. Regarding the signs and magnitudes of these estimates: they closely correspond to

the predictions of our theoretical model. If we compare these estimates to the E[λf ] values from

Panel D of Table 1, we see that they are surprisingly close to each other. In economic terms the

two factors with the biggest effect are those that arise only if the investor is both risk averse and

disappointment averse (λWD and λXD). A well-diversified single exposure to the put option on the

market return has an average annualized Sharpe ratio of 1.09. The Sharpe ratio of the exposure

to the call option on changes in market volatility is 0.86 on average. It seems that exposure to the

cash-or-nothing binary option has the lowest effect of all the five factors with a Sharpe ratio of 0.5.
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When the constant term is excluded from the estimation, λX loses its significance and decreases in

magnitude. All the other estimates seem to be robust to the exclusion of the constant.

Columns 3 and 4 of Table 5 present the results for the GDA3 model. The results are very

similar to the corresponding lines of the GDA5 model. This implies that leaving out the factors

connected to changes in market volatility from the model does not change the effect of the other

three factors.

Columns 7 and 8 show the lambda estimates for the four factor model of Carhart (1997). The

size and momentum factors are positive and significant. The economic significance of the momentum

factor is particularly big. λHML is insignificant and has a negative sign. While this result seems to

be puzzling at first, Ang et al. (2010) points out that when the estimation uses individual stocks,

the HML premium is negative. They argue that the book-to-market effect is a characteristic effect

rather than a reward for bearing HML factor loading risk. If the book-to-market ratio is included

instead of the HML factor, the coefficient on B/M is strongly positive (Ang et al.; 2010). They also

argue that when portfolios sorted on B/M are used as base assets in the FM procedure, the HML

factor loadings are induced to have a positive coefficient through forcing the portfolio breakpoints

to be based on book-to-market characteristics. This is what we also see in the results of Section

4.3.2.

The last two columns present specifications where both our five factors and the Carhart (1997)

factors are included in the model. The important observation here is that the sign, magnitude,

and significance of the lambda estimates do not change considerably compared to the models in

columns 5 and 6. This suggests that our factors capture different channels than the factors of

Carhart (1997).

To conclude this subsection, the results of Fama-MacBeth regressions analyzing the contempo-

raneous relationship between returns and factor loadings suggest that all the factors of the GDA5

model are priced in the cross-section of stock returns. The estimates on the prices of risk are signif-

icant both statistically and economically. Moreover, their signs and magnitudes closely correspond

to the theoretical predictions.
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Realized betas and future returns

While we consider the results of the previous section as our main ones, we would also like to present

some results about the relationship between realized betas and future returns. Lewellen (2011) is

a recent example to analyze predictive FM regressions. We carry out the same exercise as in the

previous section, but now the independent variables (the betas) and the dependent variable (the

average monthly excess return of the stock) are calculated on different periods. At every month t,

we estimate the conditional betas using data from the previous one-year period (months t−11, ..., t).

These betas are then related to returns following month t. We consider three different horizons:

next month’s return (t+ 1), average return over the next three months (t+ 1, ..., t+ 3), and average

return over the next six months (t+ 1, ..., t+ 6).

The results can be seen in Table 6. Our first observation is that the signs of all the lambda

estimates remain the same as the ones we got when analyzing the contemporaneous relationship.

Also, with one exception, the estimates remain significant at least at the 5% level. The only

exception is λD. It is not statistically significant at the one month and the three months horizon,

and only significant at the 10% level when considering 6 months horizon.

All in all, we can conclude that the changes are not dramatic when we consider future returns

instead of contemporaneous returns in the Fama-MacBeth regressions.

4.3.2 Portfolios as base assets

Although Ang et al. (2010) argue that it is more efficient to use individual stocks in cross-sectional

asset pricing tests than portfolios, most of the literature uses portfolios as base assets. Therefore, we

also analyze the empirical performance of our model using portfolios as base assets (with otherwise

unchanged methodology). Data on the returns of our test portfolios is obtained from Kenneth R.

French’s data library11.

We use the value-weighted return series of four different sets of portfolios: (i) 25 (5×5) portfolios

formed on size and book-to-market, (ii) 25 (5×5) portfolios formed on size and momentum, (iii)

30 portfolios consisting of 10 size, 10 book-to-market, and 10 momentum portfolios, and (iv) 30

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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industry portfolios. Results of the FM regressions are presented in Table 7, while Figure 1 and

Figure 2 show scatter plots of actual versus predicted returns for the different models and sets of

portfolios.

The first observation is that the signs on the lambda estimates in our model (both for GDA3

and GDA5) remain the same as the ones when analyzing the contemporaneous relationship using

individual stocks (the only exception is λD for the 25 Size-Momentum portfolios). Our second

comment is about the statistical significance of the estimates: three factors, λW , λWD and λXD

are statistically significant more or less consistently across all sets of portfolios. The other two

factors (λD and λX) are generally not statistically significant. The magnitudes of the estimates are

comparable to those in Table 5. The overall conclusion is that two factors loose their statistical

significance if portfolios are considered in the Fama-MacBeth procedure instead of individual stocks.

Other than that, the results seem to be quite robust to the choice of base assets.

The sum of squared pricing errors (labelled with ”SSE”) in Table 7 and Figures 1 - 2 describe the

fit of the models. We can conclude that the GDA3 model is a considerable improvement compared

to the standard CAPM, while the GDA5 model provides further considerable improvement. While

the best fit (lowest SSE) is provided by the Carhart (1997) model for all the four sets of portfolios,

the fit of the GDA5 model is comparable to that.

Decomposing returns

Using portfolios as base assets also allows us to decompose realized returns of these portfolios into

parts that can be attributed to different factors. We carry out the following exercise: for each

month t we have the β̂fj ,t estimates from the first stage of the Fama-MacBeth procedure, and the

λ̂fj ,t estimates from the second stage of the FM procedure. The product β̂fj ,t · λ̂fj ,t is the part

of the return at time t that can be attributed to factor fj . We average these products across the

whole sample period to arrive at the decomposition of the average returns of the portfolios.

Figure 3 shows the results of this exercise when the set of base assets consists of 10 portfolios

sorted on size (S1 to S10), 10 portfolios sorted on book-to-market (B1 to B10), and finally 10
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portfolios sorted on momentum (M1 to M10)12. Note, that during the estimation the 30 portfolios

are considered at the same time, so the corresponding E[λf,t] estimates are those presented in the

lower-left panel of Table 7.

Let us first look at the results of the standard CAPM (top row in Figure 3). We can see

that the predicted returns increase from the small portfolio (S1) to the portfolio of big firms

(S10), while for the actual returns the relationship is reversed. If we look at the book-to-market

portfolios, we can see that predicted returns are rather flat across the portfolios (B1 to B10),

while realized returns show that value stocks (B10) outperform growth stocks (B1). In the case of

the momentum portfolios, predicted returns increase from the looser portfolio (M1) to the winner

portfolio (M10). This is the same pattern that can be observed in the actual data, However, the

spread in the predicted returns is much smaller than the spread in the actual returns. These

observations represent the failure of the standard CAPM in pricing these portfolios.

Fama and French (1993) developed the size (SMB) and value (HML) asset pricing factors to

address this failure of the CAPM. Carhart (1997) added the momentum factor (WML) to the model.

Results of this model are presented in the second row of Figure 3. The model provides a much

improved fit compared to the standard CAPM. The predicted returns show the same patterns

as the actual returns: they decrease from S1 to S10, and increase from B1 to B10 and M1 to

M10. However, we would like to highlight one important observation: the improved fit of the size

portfolios comes solely from the SMB factor. The improved fit of the B/M portfolios comes mostly

from the HML factor. Finally, the improved fit of the momentum portfolios is almost exclusively

due to the WML factor. These observations show how each factor was tailor made to explain its

respective anomaly.

Let us look at the results of our GDA5 model in the bottom row of Figure 3. This model also

provides a much better fit than the standard CAPM, and it is very similar to the Carhart (1997)

model. The improvement for all three sets of portfolios is mainly coming from the contribution of

two sources: the premium associated with the put option on the market return and the premium

associated with the call option on the changes in market volatility. As it has been pointed out earlier,

12The same exercise can be carried out for the other sets of portfolios. The conclusions from analysing
those sets of portfolios are similar to those presented here. The results are available upon request.
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these premiums are required if and only if the investor is both risk averse and disappointment averse.

The important observation that we would like highlight is that the same factors provide large part

of the improvement across all portfolios.

4.3.3 Further robustness checks

Changing the definition of the disappointing event

So far in the empirical analysis, we have considered only one definition for the disappointing event:

the market return falling below zero (rW,t < 0). In this section we examine what happens if

this definition is changed. Results are reported in Table 8. Recall, that the disappointing event

corresponds to rW,t < ln (κ/δ) in the case of the GDA3 model, and to rW,t + (1/ψ)ϕV σ∆σ2
W,t <

ln (κ/δ∗) for the GDA5 model. In order to analyze different scenarios, we redefine the disappointing

region the following way:

rW,t − a
σrW
σ∆σ2

W

∆σ2
W,t < b .

Our baseline specification (the one that we have studied so far) corresponds to a = b = 0 (column

1 in Table 8). The disappointing region in the GDA3 model assumes a = 0. Column 2 in Table 8

presents the case when a = 0 and b = −0.005 13. In an average one-year period, the disappointing

event occurs on 21% of the trading days with these parameter values, as opposed to 46% in our

baseline case. Comparing the lambda estimates in the first two columns, we can see very little

change. The rest of Table 8 presents scenarios when a is different from zero. We use the scaling

factor
σrW
σ

∆σ2
W

, so that rW,t and ∆σ2
W,t become comparable in magnitude 14. The overall conclusion

from Table 8 is that our baseline results are remarkably robust to changes in the definition of the

disappointing event.

13This implies that κ
δ = 0.995 from rW,t < ln (κ/δ).

14The value of the
σrW
σ

∆σ2
W

ratio is around 800 in an average one-year period. We would also like to note

that the typical value of (1/ψ)ϕV σ in our calibrated model (see Table 1) is around -2600. This roughly
corresponds to the case when a = 3.

32



Different measures of market volatility

In this section we explore how the results change if different measures of market volatility are

considered. In our baseline specification (the results presented so far) daily market variance is

estimated by fitting an EGARCH model to the daily market return series. Alternative approaches

include using the VIX index, calculating daily realized variance from intra-daily market returns,

or fitting a different model with conditional heteroskedasticity. Results using these approaches are

presented in Table 9. For detailed description of the estimation of market variance in the different

cases, we refer the reader to Appendix B.

Panel A of Table 9 presents the results using the whole sample period. Since the VIX and

the intra-daily market return data is available after 1986, only the results for the model based

approaches are presented. The results are very robust, there are only minor changes across the dif-

ferent GARCH specifications. The models that take into account the leverage effect (the EGARCH

and the GJR-GARCH) perform slightly better than the standard GARCH. Panel B presents the

results for the subsample between 1986 and 2010 when data is available for all the volatility mea-

surement approaches. The adjusted R2-s, the signs and statistical significance of the estimates are

very similar across the specifications. The only difference is that the magnitudes of λX and λXD

are higher when the VIX and the realized variance is used. The overall conclusion is that while we

get the best results (in terms of adjusted R2) when the EGARCH model is used, these results do

not change much if a different approach is considered for measuring market volatility.

5 Revisiting measures of downside risk

In this section, we argue and show that exposures of asset payoffs to the three option factors provide

a rational interpretation of downside risks. To achieve this, we show how our multivariate betas

from equation (29) are related to a number of different measures put forward in previous empirical

research to capture the market downside risk of an asset. We refer the reader to Appendix A.2 and

A.3 for complete derivations of these relations.

One of the most popular measures of the market downside risk is the downside beta examined
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by Ang, Chen and Xing (2006) and defined as follows15:

βDMi ≡
Cov

(
Rei,t, rW,t | Dt

)
V ar [rW,t | Dt]

. (37)

We show that

βDMi = βiW + βiWD + βDMX (βiX + βiXD) where βDMX ≡
Cov

(
∆σ2

W,t, rW,t | Dt
)

V ar [rW,t | Dt]
. (38)

The above formula reduces to βDMi = βiW + βiWD for the GDA3 model. For the GDA5 model,

we find empirically that the term βDMX (βiX + βiXD) is negligible so that βDMi ≈ βiW + βiWD. We

report in Table 10 a sample cross-sectional correlation of 0.993 between βDMi and βiW + βiWD for

the GDA5 model.

Similar to the market downside beta, we can introduce a volatility downside beta which we

define by

βDVi ≡
Cov

(
Rei,t,∆σ

2
W,t | Dt

)
V ar

[
∆σ2

W,t | Dt
] . (39)

We show that

βDVi = βiX + βiXD + βDVW (βiW + βiWD) where βDVW ≡
Cov

(
rW,t,∆σ

2
W,t | Dt

)
V ar

[
∆σ2

W,t | Dt
] . (40)

We find empirically that the term βDVW (βiW + βiWD) is negligible so that βDVi ≈ βiX + βiXD. Our

results from the previous section show that these two major components of the volatility downside

beta are priced and predict future returns.

Post et al. (2010) advocate to use the semi-variance (SV) beta to measure the market downside

risk. They study how realized market downside risk measures are related to future returns, and

argue that the SV beta captures downside market risk better than the downside beta. The SV

beta, that emerged from the lower partial moment framework of Bawa and Lindenberg (1977), is

15Empirically, Ang, Chen and Xing (2006) define the disappointing event as rW,t < µW , i.e. the market
return falls below its long-run mean. Although we keep our definition of the disappointing event as closed
as possible to the theory, the difference is empirically irrelevant.
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defined by16

βSVi ≡
E
[
Rei,trW,t | Dt

]
E
[
r2
W,t | Dt

] . (41)

We show that

βSVi = aWβiW + aWDβiWD + aDβiD + aXβiX + aXDβiXD + aRE
[
Rei,t
]

(42)

where the a’s coefficients are defined by

aW ≡ 1− aRE [rW,t] , aWD ≡ 1− π1aRE [rW,t | Dt] , aD ≡ (1− π1) aR

aX ≡ βSVX − aRE
[
∆σ2

W,t

]
, aXD ≡ βSVX − π1aRE

[
∆σ2

W,t | Dt
] (43)

and where

aR ≡
E [rW,t | Dt]

E
[
r2
W,t | Dt

] , π1 = Prob (Dt) and βSVX ≡
E
[
∆σ2

W,trW,t | Dt
]

E
[
r2
W,t | Dt

] . (44)

Equation (42) reduces to βSVi = aWβiW + aWDβiWD + aDβiD + aRE
[
Rei,t

]
for the GDA3 model.

Acharya et al. (2010) and Brownlees and Engle (2011) has used the Marginal Expected Shortfall

(MES) to measure the systemic risk of financial institutions during the recent crisis. They show

that the MES, together with the leverage of the institution, is able to predict emerging risks during

the financial crisis.17 We believe that it would be useful to show that the MES can be expressed in

terms of exposures to the theoretical factors that are priced at the market place. The MES of an

asset may be defined as

MESi ≡ E
[
−Rei,t | Dt

]
. (45)

16Post et al. (2010) define the disappointing event similarly as rW,t < 0, i.e. the market return is negative.
As already mentioned, empirical results are robust to this alternative definition of the downside event.

17Since these authors focus on systemic risk, that is a worse downside risk, they empirically consider a
disappointing event that is more infrequent compared to other papers on downside risks (5% worst days for
the market return).

35



We show that

MESi = aWβiW + aWDβiWD + aDβiD + aXβiX + aXDβiXD + E
[
−Rei,t

]
, (46)

where the a’s coefficients are defined by

aW ≡ − (E [rW,t | Dt]− E [rW,t]) , aWD ≡ − (1− π1)E [rW,t | Dt] , aD ≡ − (1− π1)

aX ≡ −
(
E
[
∆σ2

W,t | Dt
]
− E

[
∆σ2

W,t

])
, aXD ≡ − (1− π1)E

[
∆σ2

W,t | Dt
]
.

(47)

Equation (46) reduces to MESi = aWβiW + aWDβiWD + aDβiD +E
[
−Rei,t

]
for the GDA3 model.

Note, that the a’s coefficients in equation (43) and (47) do not vary in the cross-section, so the

variation of βSVi and MESi across stocks is a result of the variation in the betas and the expected

return of the asset. However, the relative magnitude of the weights may vary through time. Also

observe that, since the SV beta and the MES not only contains our multivariate betas but also the

mean excess return of the stock, they should not be applied in portfolio sorts when analyzing the

contemporaneous relationship between downside risk measures and expected returns. Also, when

the relationship between these two measures and future returns is analyzed (as in Post et al.; 2010

for the SV beta), the momentum effect is incorporated in the measure through the E
[
Rei,t

]
term.

For empirical studies on downside risks and expected returns, we advocate using the relative

SV beta and the relative MES which we define by

βRSVi ≡
E
[
Rei,trW,t | Dt

]
E
[
r2
W,t | Dt

] − E [rW,t | Dt]

E
[
r2
W,t | Dt

]E [Rei,t] and RMESi ≡ E
[
−Rei,t | Dt

]
−E

[
−Rei,t

]
. (48)

The RMES of an asset is just equivalent to the opposite of its relative downside potential as

previously defined in Section 4. The sample cross-sectional correlation between the original SV beta

and the relative SV beta is 0.959, and the sample cross-sectional correlation between the marginal

expected shortfall and the opposite of the relative downside potential is equal to 0.897 as reported

in Table 10. The term aXβiX + aXDβiXD is empirically irrelevant for the relative SV beta and the

relative MES. Table 10 shows that the correlation between βRSVi and aWβiW + aWDβiWD + aDβiD
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is 0.995, while the correlation between the relative MSE and aWβiW + aWDβiWD + aDβiD is 0.998

for the GDA5 model.

Finally, we observe from the a’s coefficients expressed in equations (43) and (47) that aW ,

aWD and aD are positive while aX and aXD are negative. This shows that, both the relative SV

beta and the relative MES increase with the betas on the market return, the put option and the

cash-or-nothing option, and decrease with the betas on changes in market volatility and the call

option. An empirical investigation of how the a’s coefficients vary through time and how they

weight the different components of downside risks is left out for further research. While exposure

to the cash-or-nothing option influences the relative SV beta and the relative MES, it plays no role

in determining the market downside beta and the volatility downside beta.

6 Conclusion and Future Work

This paper provides an empirical analysis of downside risks in asset prices. The approach is consis-

tent with general equilibrium implications for asset returns in the cross-section when investors have

totally rational and axiomatized asymmetric preferences. The theoretical setup explicitly disentan-

gles the components of an asset premium that are due to the different characteristics of investors’

behavior, and shows that asymmetric preferences lead to option pricing in the cross-section of stock

returns. These options provide a straightforward way for investors to act on their views of two of

the most closely followed market variables, the market return and changes in market volatility.

Empirical results show that the cross-section of stock returns reflects a premium for bearing unde-

sirable exposures to these options, and that the new cross-sectional model significantly improves

over nested specifications without the option factors.

The paper also derives explicit cross-sectional relations between existing downside risk measures

and betas on the market return, changes in market volatility and option factors. The weights

associated to these relations and how they vary through time and in relation with the business

cycle may constitute an interesting avenue for future research.
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Apppendix

A Relationships between different measures

A.1 Relating σiD to E
[
Re
i,t | Dt

]
σiD can be expressed as

σiD = Cov
[
Rei,t, I (Dt)

]
= E

[
Rei,tI (Dt)

]
− E

[
Rei,t

]
E [I (Dt)]

= E
[
Rei,t|Dt

]
P (Dt)− E

[
Rei,t

]
P (Dt)

= P (Dt)
(
E
[
Rei,t|Dt

]
− E

[
Rei,t

])
.

(A.1)

Note, that P (Dt) does not vary in the cross-section, so sorting on σiD is equivalent to sorting on E
[
Rei,t|Dt

]
−

E
[
Rei,t

]
.

A.2 The GDA3 model

Let us start with the GDA3 model. The beta measures are calculated using daily data from t = 1, ..., T with

the following OLS regression.

Rei,t = αi + βiW · rW,t + βiWD · rW,tI(Dt) + βiD · I(Dt) + εit (A.2)

The mechanics of the OLS give us the following four equations

0 = E [εit]

E
[
Rei,t

]
= αi + βiDP (Dt) + βiWE [rW,t] + βiWDE [rW,t | Dt]P (Dt) (A.3)

0 = E [rW,t · εit]

0 = E
[
rW,t

(
Rei,t − αi − βiW · rW,t − βiWD · rW,tI(Dt)− βiD · I(Dt)

)]
E
[
Rei,trW,t

]
= αiE [rW,t] + βiDE [rW,t | Dt]P (Dt) + βiWE

[
r2
W,t

]
+ βiWDE

[
r2
W,t | Dt

]
P (Dt) (A.4)

0 = E [rW,tI(Dt) · εit]

0 = E
[
rW,tI(Dt)

(
Rei,t − αi − βiW · rW,t − βiWD · rW,tI(Dt)− βiD · I(Dt)

)]
E
[
Rei,trW,tI(Dt)

]
= (αi + βiD)E [rW,tI(Dt)] + (βiW + βiWD)E

[
r2
W,tI(Dt)

]
E
[
Rei,trW,t | Dt

]
= (αi + βiD)E [rW,t | Dt] + (βiW + βiWD)E

[
r2
W,t | Dt

]
(A.5)

0 = E [I(Dt) · εit]

0 = E
[
I(Dt)

(
Rei,t − αi − βiW · rW,t − βiWD · rW,tI(Dt)− βiD · I(Dt)

)]
E
[
Rei,tI(Dt)

]
= (αi + βiD)E [I(Dt)] + (βiW + βiWD)E [rW,tI(Dt)]

E
[
Rei,t | Dt

]
= (αi + βiD) + (βiW + βiWD)E [rW,t | Dt] (A.6)
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The downside beta used in Ang, Chen and Xing (2006) is defined as

βDMi =
Cov

[
Rei,t, rW,t | Dt

]
V ar [rW,t | Dt]

(A.7)

Using (A.5) and (A.6), this can be rewritten as

βDMi =
E
[
Rei,trW,t | Dt

]
− E

[
Rei,t | Dt

]
E [rW,t | Dt]

V ar [rW,t | Dt]

=
(βiW + βiWD) ·

(
E
[
r2
W,t | Dt

]
− E2 [rW,t | Dt]

)
V ar [rW,t | Dt]

= βiW + βiWD

(A.8)

The semi-variance beta used by Post et al. (2010) is defined as

βSVi =
E
[
Rei,trW,t | Dt

]
E
[
r2
W,t | Dt

] (A.9)

Using (A.5), this can be rewritten as

βSVi =
E [rW,t | Dt]

E
[
r2
W,t | Dt

] · (αi + βiD) + (βiW + βiWD) (A.10)

Substituting for αi using (A.3) will result in

βSVi = E
[
Rei,t

] E [rW,t | Dt]

E
[
r2
W,t | Dt

] + βiD (1− P (Dt))
E [rW,t | Dt]

E
[
r2
W,t | Dt

]+

+ βiW

1− E [rW,t]
E [rW,t | Dt]

E
[
r2
W,t | Dt

]
+ βiWD

1− P (Dt)
E2 [rW,t | Dt]

E
[
r2
W,t | Dt

]
 (A.11)

The marginal expected shortfall from Brownlees and Engle (2011) is simply the negative of (A.6),

MESi = −E
[
Rei,t | Dt

]
= − (αi + βiD)− E [rW,t | Dt] · (βiW + βiWD) (A.12)

Substituting for αi using (A.3), will result in

MESi = (P (Dt)− 1)βiD + (E [rW,t]− E [rW,t | Dt])βiW + E [rW,t | Dt] (P (Dt)− 1)βiWD − E
[
Rei,t

]
(A.13)

A.3 The GDA5 model

Let us look at the GDA5 model. The betas are calculated from the following OLS regression

Rei,t = αi + βiW · rW,t + βiWD · rW,tI(Dt) + βiD · I(Dt) + βiX ·∆σ2
W,t + βiXD ·∆σ2

W,tI(Dt) + εit (A.14)
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Similarly to the previous section, the mechanics of the OLS give us the following results:

E
[
Rei,t

]
= αi + βiDP (Dt) + βiWE [rW,t] + βiWDE [rW,t | Dt]P (Dt) +

+ βiXE
[
∆σ2

W,t

]
+ βiXDE

[
∆σ2

W,t | Dt
]
P (Dt) (A.15)

E
[
Rei,trW,t

]
= αiE [rW,t] + βiDE [rW,t | Dt]P (Dt) + βiWE

[
r2
W,t

]
+ βiWDE

[
r2
W,t | Dt

]
P (Dt) +

+ βiXE
[
rW,t∆σ

2
W,t

]
+ βiXDE

[
rW,t∆σ

2
W,t | Dt

]
P (Dt) (A.16)

E
[
Rei,trW,t | Dt

]
= (αi + βiD)E [rW,t | Dt] + (βiW + βiWD)E

[
r2
W,t | Dt

]
+

(βiX + βiXD)E
[
rW,t∆σ

2
W,t | Dt

]
(A.17)

E
[
Rei,t | Dt

]
= (αi + βiD) + (βiW + βiWD)E [rW,t | Dt] + (βiX + βiXD)E

[
∆σ2

W,t | Dt
]

(A.18)

E
[
Rei,t∆σ

2
W,t

]
= αiE

[
∆σ2

W,t

]
+ βiDE

[
∆σ2

W,t | Dt
]
P (Dt) + βiWE

[
rW,t∆σ

2
W,t

]
+

+ βiWDE
[
rW,t∆σ

2
W,t | Dt

]
P (Dt) + βiXE

[(
∆σ2

W,t

)2]
+

+ βiXDE
[(

∆σ2
W,t

)2 | Dt]P (Dt) (A.19)

E
[
Rei,t∆σ

2
W,t | Dt

]
= (αi + βiD)E

[
∆σ2

W,t | Dt
]

+ (βiW + βiWD)E
[
rW,t∆σ

2
W,t | Dt

]
+

+ (βiX + βiXD)E
[(

∆σ2
W,t

)2 | Dt] (A.20)

The downside beta used in Ang, Chen and Xing (2006) is defined as in (A.7). Using (A.17) and (A.18), it

can be rewritten as

βDMi =
E
[
Rei,trW,t | Dt

]
− E

[
Rei,t | Dt

]
E [rW,t | Dt]

V ar [rW,t | Dt]

=
(βiW + βiWD) ·

(
E
[
r2
W,t | Dt

]
− E2 [rW,t | Dt]

)
V ar [rW,t | Dt]

+

+
(βiX + βiXD) ·

(
E
[
rW,t∆σ

2
W,t | Dt)

]
− E

[
∆σ2

W,t | Dt
]
E [rW,t | Dt]

)
V ar [rW,t | Dt]

= (βiW + βiWD) +
Cov

[
rW,t∆σ

2
W,t | Dt

]
V ar [rW,t | Dt]

· (βiX + βiXD)

(A.21)

The semi-variance beta used by Post et al. (2010) is defined as in (A.9). Using (A.17), this can be

rewritten as

βSVi =
E [rW,t | Dt]

E
[
r2
W,t | Dt

] · (αi + βiD) + (βiW + βiWD) +
E
[
rW,t∆σ

2
W,t | Dt

]
E
[
r2
W,t | Dt

] · (βiX + βiXD) (A.22)
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The marginal expected shortfall from Brownlees and Engle (2011) is simply the negative of (A.18),

MESi = − (αi + βiD)− E [rW,t | Dt] · (βiW + βiWD)− E
[
∆σ2

W,t | Dt
]
· (βiX + βiXD) (A.23)

Substituting for αi using (A.15), will result in

MESi = (P (Dt)− 1)βiD + (E [rW,t]− E [rW,t | Dt])βiW + E [rW,t | Dt] (P (Dt)− 1)βiWD

+
(
E
[
∆σ2

W,t

]
− E

[
∆σ2

W,t | Dt
])
βiX + E

[
∆σ2

W,t | Dt
]

(P (Dt)− 1)βiXD − E
[
Rei,t

] (A.24)

The volatility downside beta can be defined similarly to the market downside beta:

βDVi ≡
Cov

[
Rei,t,∆σ

2
W,t | Dt

]
V ar

[
∆σ2

W,t | Dt
] (A.25)

Using (A.18) and (A.20), this can be rewritten as

βDVi =
E
[
Rei,t∆σ

2
W,t | Dt

]
− E

[
Rei,t | Dt

]
E
[
∆σ2

W,t | Dt
]

V ar
[
∆σ2

W,t | Dt
]

=
(βiX + βiXD) ·

(
E
[(

∆σ2
W,t

)2 | Dt]− E2
[
∆σ2

W,t | Dt
])

V ar
[
∆σ2

W,t | Dt
] +

+
(βiW + βiWD) ·

(
E
[
rW,t∆σ

2
W,t | Dt)

]
− E

[
∆σ2

W,t | Dt
]
E [rW,t | Dt]

)
V ar

[
∆σ2

W,t | Dt
]

= (βiX + βiXD) +
Cov

[
rW,t∆σ

2
W,t | Dt

]
V ar

[
∆σ2

W,t | Dt
] · (βiW + βiWD)

(A.26)
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B Different measures of market volatility

B.1 VIX

The daily value of the VIX index is obtained from CBOE through the WRDS service. The variance of the

market is calculated as
(
V IX
100

)2
. Since the VIX measures 30-day expected volatility of the S&P 500 Index,

we divide this value by 30 to get the daily variance of the market. So, the change in the daily market variance

is calculated as

∆σ2,V IX
W,t =

(V IXt/100)
2 − (V IXt−1/100)

2

30
(B.1)

B.2 Realized Volatility

To calculate daily realized volatility, we use intra-daily return series of the S&P 500. The data comes from

Olsen Financial Technologies and covers the period between February 1986 and September 2010. Daily

realized market variance is calculated as

σ2,RV
W,t =

∑
j

r2
j,t , (B.2)

where rj,t denotes the 10-minute log return series on the trading day t. Following Bandi et al. (2006) we

correct the variance estimates for the lack of overnight returns by multiplying them with a constant factor

ξ =
1
T

∑T
t=1 r

2
W,t

1
T

∑T
t=1 σ

2,RV
W,t

, where rW,t denotes daily log returns on the market. The change in the daily market

variance is calculated as

∆σ2,RV
W,t = ξ

(
σ2,RV
W,t − σ

2,RV
W,t−1

)
(B.3)

B.3 GARCH type of models

In this approach, we fit a model with conditional heteroskedasticity to the daily log market return series rW,t

(the value-weighted average return on all NYSE, AMEX, and NASDAQ stocks from CRSP). We consider

three different models: the standard GARCH(1,1), the EGARCH(1,1,1) by Nelson (1991) and the GJR-

GARCH(1,1,1) by Glosten et al. (1993). The models are given as (the difference is in the variance equation):

rW,t = µ+ εt , with εt = σW,tet , and et
iid∼ N (0, 1)

GARCH : σ2
W,t = ω + αε2t−1 + βσ2

W,t−1

EGARCH : ln
(
σ2
W,t

)
= ω + α

(∣∣∣∣ εt−1

σW,t−1

∣∣∣∣−
√

2

π

)
+ γ

εt−1

σW,t−1
+ β ln

(
σ2
W,t−1

)
GJR−GARCH : σ2

W,t = ω + αε2t−1 + γε2t−1I (εt−1 < 0) + βσ2
W,t−1

(B.4)

The change in the daily market variance is calculated as

∆σ2,model
W,t = σ̂2,model

W,t − σ̂2,model
W,t−1 (B.5)
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Table 1: Model-Implied Values: Five-Factor Cross-Section Risk-Return Tradeoff

Model Calibration Scenarios

δ 0.9979 0.9979 0.9979 0.9979 0.9969 0.9969 0.9969 0.9969 0.9969
γ 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75
ψ 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
α 0.3 0.3 0.2 0.4 0.3 0.3 0.3 0.1 0.1
κ 0.992 0.997 0.993 0.995 0.999 0.998 0.997 0.991 0.99
φσ 0.995 0.99 0.99 0.995 0.99 0.99 0.99 0.99 0.99

A. Risk-Free Rate

E
[
rf
]

1.31 0.75 0.74 1.41 1.81 1.87 1.97 1.24 1.32
σ
[
rf
]

2.46 1.98 3.22 1.69 1.74 1.85 1.98 4.70 4.78

B. Welfare Valuation Ratio

ϕV 0 1.945 1.238 1.078 1.646 1.232 1.126 1.023 1.432 0.600
ϕV σ -6.037E+3 -4.152E+3 -3.339E+3 -4.947E+3 -4.051E+3 -3.385E+3 -2.740E+3 -4.630E+3 -1.307E+3

ϕR0 1.946 1.237 1.077 1.646 1.231 1.125 1.022 1.431 0.598
ϕRσ -6.043E+3 -4.153E+3 -3.338E+3 -4.953E+3 -4.054E+3 -3.388E+3 -2.743E+3 -4.628E+3 -1.307E+3

ϕ 1.00110 1.00016 0.99988 1.00130 1.00076 1.00100 1.00123 0.99950 0.99981
δ∗ 0.99737 0.99842 0.99858 0.99745 0.99736 0.99729 0.99727 0.99820 0.99785

C. Disappointment Probability

π1 (L) 0.0122 0.0682 0.0088 0.0597 0.1246 0.0975 0.0745 0.0025 0.0024
π1 (H) 0.2105 0.2888 0.1951 0.2822 0.3172 0.3026 0.2881 0.1252 0.1183

E [π1] 0.0541 0.1148 0.0482 0.1067 0.1653 0.1408 0.1197 0.0285 0.0269

D. Factor Risk Premia

λW (L) 0.0073 0.0072 0.0044 0.0057 0.0072 0.0055 0.0042 0.0052 0.0027
λW (H) 0.0077 0.0083 0.0104 0.0063 0.0083 0.0083 0.0083 0.0140 0.0139

E [λW ] 0.0074 0.0075 0.0057 0.0058 0.0075 0.0061 0.0051 0.0071 0.0050

λX (L) -1.19E-5 -1.37E-5 -9.85E-6 -8.07E-6 -1.25E-5 -9.13E-6 -6.67E-6 -1.42E-5 -7.59E-6
λX (H) -1.09E-6 -2.08E-6 -1.87E-6 -1.10E-6 -2.09E-6 -2.01E-6 -1.90E-6 -1.79E-6 -1.44E-6

E [λX ] -9.58E-6 -1.12E-5 -8.16E-6 -6.60E-6 -1.03E-5 -7.63E-6 -5.66E-6 -1.16E-5 -6.29E-6

λD (L) -0.0744 -0.1779 -0.0666 -0.1160 -0.2421 -0.2022 -0.1637 -0.0676 -0.0373
λD (H) -0.2781 -0.3045 -0.3741 -0.2301 -0.3079 -0.3070 -0.3055 -0.4866 -0.4794

E [λD ] -0.1175 -0.2046 -0.1316 -0.1401 -0.2560 -0.2243 -0.1937 -0.1561 -0.1307

λWD (L) 0.0067 0.0064 0.0040 0.0051 0.0060 0.0046 0.0035 0.0047 0.0025
λWD (H) 0.0036 0.0030 0.0041 0.0027 0.0028 0.0029 0.0031 0.0052 0.0053

E [λWD ] 0.0061 0.0057 0.0041 0.0046 0.0053 0.0042 0.0034 0.0048 0.0031

λXD (L) -1.19E-5 -1.37E-5 -9.85E-6 -8.06E-6 -1.25E-5 -9.12E-6 -6.66E-6 -1.42E-5 -7.59E-6
λXD (H) 8.48E-8 1.46E-8 -1.24E-8 8.50E-8 7.04E-8 9.10E-8 1.09E-7 -6.21E-8 -2.30E-8

E [λXD ] -9.33E-6 -1.08E-5 -7.77E-6 -6.34E-6 -9.83E-6 -7.17E-6 -5.23E-6 -1.12E-5 -5.99E-6

The table shows the model-implied expected annualized risk-free rate and its volatility in Panel A, the drift and loading coef-
ficients of the welfare valuation ratio onto market volatility in Panel B, the disappointment probability and its unconditional
value in Panel C, and finally the factor risk premia and their expected values in Panel D.
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Table 2: Estimating the EGARCH model

The model we estimate - EGARCH(1,1,1)

rW,t =µ+ εt

εt =σW,tet

ln
(
σ2
W,t

)
=ω + α

(∣∣∣∣ εt−1

σW,t−1

∣∣∣∣−
√

2

π

)
+ γ

εt−1

σW,t−1
+ β ln

(
σ2
W,t−1

)
et

iid∼N (0, 1)

Estimates
µ ω α γ β

Coeff 4.13E-4 -0.141 0.150 -0.074 0.985
s.e. (0.0001) (0.0098) (0.0050) (0.0031) (0.0010)

Table 3: Correlations between measures of risk

σiW σiD σiWD σiX σiXD βiW βiD βiWD βiX βiXD
σiW 1.00
σiD -0.91 1.00
σiWD 0.94 -0.86 1.00
σiX -0.01 0.02 -0.01 1.00
σiXD -0.03 0.01 -0.04 0.68 1.00
βiW 0.73 -0.51 0.52 -0.01 -0.01 1.00
βiD 0.04 0.36 0.03 0.00 -0.02 0.42 1.00
βiWD -0.05 0.04 0.26 0.04 0.00 -0.58 -0.02 1.00
βiX 0.10 -0.08 0.10 0.72 0.06 0.07 0.01 0.01 1.00
βiXD -0.00 -0.01 -0.00 -0.01 0.68 -0.02 0.01 0.05 -0.65 1.00

The above table shows the correlation matrix of several measures of risk connected to our
analysis. At every month t, we calculate the cross-sectional correlation of the measures
estimated using daily data from the previous one-year period. The values presented in
these tables are the time-series averages of these cross-sectional correlations over the sample
period. The sample period is July, 1963 - December, 2010.
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Table 4: Average returns of portfolios sorted on different measures of risk

Panel A: equal-weighted portfolios

measures calculated separately measures from GDA5 model
σiW σiD σiWD σiX σiXD βiW βiD βiWD βiX βiXD

Low 5.10 17.44 4.28 15.29 15.79 9.28 11.39 5.70 12.59 12.96
2 7.60 11.21 7.33 11.75 12.34 8.73 9.80 7.84 10.89 11.15
3 9.47 9.65 9.00 9.64 10.02 9.57 9.08 9.61 9.38 9.67
4 11.33 7.62 11.23 7.84 7.79 10.73 9.60 11.77 8.62 9.12
High 17.99 5.51 19.81 6.76 5.42 12.81 11.25 16.44 9.65 8.25

H-L 12.89 -11.93 15.54 -8.53 -10.37 3.53 -0.14 10.73 -2.94 -4.70
t-stat 3.70 -3.61 4.16 -4.90 -7.35 1.70 -0.16 6.20 -2.02 -6.25

Panel B: value-weighted portfolios

measures calculated separately measures from GDA5 model
σiW σiD σiWD σiX σiXD βiW βiD βiWD βiX βiXD

Low 6.22 12.36 6.12 15.48 16.76 8.02 10.57 5.18 12.10 13.22
2 6.60 8.10 6.31 12.29 13.22 7.81 9.07 8.37 9.50 10.98
3 7.34 7.38 7.12 9.48 10.30 8.13 8.33 9.54 8.30 8.50
4 8.06 6.47 8.82 7.35 7.53 8.38 8.25 11.83 8.25 7.34
High 12.73 6.23 14.78 5.96 4.48 9.90 8.92 15.93 8.95 5.68

H-L 6.50 -6.13 8.66 -9.52 -12.28 1.88 -1.65 10.75 -3.15 -7.54
t-stat 1.88 -1.78 2.30 -5.16 -6.34 0.72 -1.07 3.79 -2.10 -5.71

The table lists the equal-weighted (Panel A) and value-weighted (Panel B) average returns of stocks
sorted by realized covariances and betas. For each month, σ-s and β-s are calculated using daily simple
excess returns over the previous 12 months (including the given month). For each month and each risk
measure, we rank stocks into 5 portfolios, and the average monthly excess returns (over the previous
12 months) of these portfolios are calculated. The table reports the annualized average return of these
portfolios over the whole sample period. The row labelled ”H-L” reports the difference between the
returns of portfolio 5 and portfolio 1. The row labelled ”t-stat” is the t-statistics computed using
Newey-West (1987) standard errors with 12 lags for the H-L difference.
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Table 7: Fama-Macbeth regressions on portfolios

25 Size - BM 25 Size - Momentum

λW 0.0064∗∗∗ 0.0043∗∗∗ 0.0052∗∗∗ 0.0047∗∗∗ 0.0068∗∗∗ 0.0051∗∗∗ 0.0052∗∗∗ 0.0047∗∗∗

(0.0019) (0.0016) (0.0017) (0.0016) (0.0019) (0.0017) (0.0017) (0.0017)
λD -0.3969 -0.2477 0.4210 0.2153

(0.3625) (0.3156) (0.2892) (0.2744)
λWD 0.0112∗∗∗ 0.0067∗∗ 0.0158∗∗∗ 0.0103∗∗∗

(0.0032) (0.0029) (0.0033) (0.0029)
λX -1.6E-5 -3.3E-5∗

(1.1E-5) (1.8E-5)
λXD -1.4E-5∗ -3.6E-5∗∗∗

(8.2E-6) (1.2E-5)
λSMB 0.0021 0.0025∗

(0.0013) (0.0013)
λHML 0.0037∗∗∗ 0.0031

(0.0012) (0.0019)
λWML 0.0129∗∗∗ 0.0064∗∗∗

(0.0022) (0.0017)

SSE 0.0017 0.0005 0.0009 0.0007 0.0023 0.0007 0.0013 0.0009

10 Size, 10 BM, 10 Momentum 30 industry

λrW 0.0052∗∗∗ 0.0046∗∗∗ 0.0047∗∗∗ 0.0046∗∗∗ 0.0054∗∗∗ 0.0053∗∗∗ 0.0053∗∗∗ 0.0050∗∗∗

(0.0017) (0.0016) (0.0017) (0.0016) (0.0017) (0.0016) (0.0017) (0.0016)
λI(D) -0.2632 -0.2542 -0.4592∗∗ -0.3828

(0.2451) (0.2128) (0.2292) (0.2361)
λrW I(D) 0.0096∗∗∗ 0.0061∗∗ 0.0081∗∗∗ 0.0061∗∗∗

(0.0032) (0.0027) (0.0019) (0.0019)
λ∆σ2

W
-1.3E-5 -9.1E-6

(1.3E-5) (6.5E-6)
λ∆σ2

W I(D) -1.9E-5∗∗∗ -7.8E-6

(7.2E-6) (6.4E-6)
λSMB 0.0012 0.0007

(0.0013) (0.0013)
λHML 0.0020∗ 0.0002

(0.0011) (0.0010)
λWML 0.0050∗∗∗ 0.0189∗∗∗

(0.0015) (0.0014)

SSE 0.0015 0.0005 0.0009 0.0007 0.0041 0.0021 0.0033 0.0027

The Table presents results of Fama-MacBeth regressions. The base assets are portfolios. For each month
t the realized β-s are calculated using daily data over the previous 12 months (months t − 11 to t). The
dependent variable in the cross-sectional regression for each month t is the average monthly excess return
over the same period (previous 12 months - t− 11 to t). The standard errors (in parenthesis) are corrected
for 12 Newey-West (1987) lags. The row labelled ”SSE” presents the average sum of squared pricing errors
for the given model.
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Table 10: Correlations between measures of market downside risk

βDMi β
DM(2)
i βSVi βRSVi β

RSV (2)
i MESi RMESi RMES

(2)
i βDVi β

DV (2)
i

βDMi 1.000

β
DM(2)
i 0.993 1.000
βSVi 0.821 0.820 1.000
βRSVi 0.861 0.858 0.959 1.000
βRSVi 0.857 0.864 0.956 0.995 1.000
MESi 0.429 0.433 0.858 0.761 0.760 1.000
RMESi 0.497 0.499 0.832 0.860 0.856 0.897 1.000

RMES
(2)
i 0.498 0.502 0.832 0.859 0.860 0.896 0.998 1.000

βDVi -0.046 0.028 0.010 -0.009 0.044 0.057 0.028 0.043 1.000

β
DV (2)
i 0.069 0.141 0.105 0.090 0.142 0.105 0.084 0.099 0.981 1.000

The above table shows the correlation matrix of several measures of downside market risk. At every month
t, we calculate the cross-sectional correlation of the measures estimated using daily data from the previous
one-year period. The values presented in these tables are the time-series averages of these cross-sectional
correlations over the sample period. The sample period is July, 1963 - December, 2010. The following
measures are presented in the Table:

βDMi =
Cov

[
Rei,t, rW,t | Dt

]
V ar

[
rW,t | Dt

]
β
DM(2)
i = βiW + βiWD (β-s from the GDA5 model)

βSVi =
E
[
Rei,trW,t | Dt

]
E
[
r2
W,t | Dt

]
βRSVi =

E
[
Rei,trW,t | Dt

]
E
[
r2
W,t | Dt

] −
E
[
rW,t | Dt

]
E
[
r2
W,t | Dt

]E [Rei,t]
β
RSV (2)
i = aW βiW + aWDβiWD + aDβiD (β-s from the GDA5 model and the a coefficients are given in (43))

MESi = E
[
−Rei,t | Dt

]
RMESi = E

[
−Rei,t | Dt

]
− E

[
−Rei,t

]
RMES

(2)
i = aW βiW + aWDβiWD + aDβiD (β-s from the GDA5 model and the a coefficients are given in (47))

βDVi =
Cov

[
Rei,t,∆σ

2
W,t | Dt

]
V ar

[
∆σ2

W,t | Dt
]

β
DV (2)
i = βiX + βiXD (β-s from the GDA5 model)
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Figure 3: Returns on the 10 Size, 10 Book-to-Market and 10 Momentum portfolios
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W D WD X XD predicted actual

This figure shows the decomposition of the average predicted excess return of 10 Size (left column), 10 B/M (middle
column), and 10 momentum (right column) portfolios. Each part represents E[βfj · λfj ] connected to factor fj from the

standard CAPM (top row), the Carhart (1997) (middle row), and the GDA5 (bottom row) models. The corresponding
E[λfj ] estimates are those presented in the lower-left panel of Table 7. The symbol 4 represents average predicted return

(sum of the parts), while ◦ represents actual average excess return of the portfolios.
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