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Abstract
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and investors have aversion to both risk and expected downside losses. We show that
an asset risk premium is not only determined by covariation of returns with the market
return and changes in market volatility, but also by covariation of returns with three
option payoffs: a cash-or-nothing option, a put option on the market return and a call
option on changes in market volatility. These options provide a straightforward way
for investors to act on their views of two of the most closely followed market variables,
the market return and changes in market volatility. We show that the cross-section of
stock returns reflects a premium for bearing undesirable exposures to these options,
which we also show are rational interpretations for downside risks. The model provides
a unified framework for understanding the various channels through which downside
risks may affect asset prices. Our empirical results shed light on the total and relative
economic significance of these channels.
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1 Introduction

This paper explicitly derives the cross-sectional predictions of an intertemporal equilibrium asset
pricing model when aggregate consumption volatility is stochastic and investors have aversion
to both risk and expected downside losses. We show that an asset risk premium is not only
determined by covariation of returns with the market return and changes in market volatility, but
also by covariation of returns with three option payoffs: a cash-or-nothing option, a put option
on the market return and a call option on changes in market volatility. These options provide a
straightforward way for investors to act on their views of two of the most closely followed market
variables, the market return and changes in market volatility. We show that the cross-section of
stock returns reflects a premium for bearing undesirable exposures to these options, which we also
show are rational interpretations for downside risks.

Standard capital asset pricing models all suggest that an asset premium is a compensation for
the asset risk, where risk is understood as the covariance between the asset payoffs and the unex-
pected variations in priced factors at the marketplace. Examples of these factors are the market
return in the CAPM of Sharpe (1964) and Lintner (1965), and fundamentals such as the con-
sumption growth in the C-CAPM of Lucas (1978) and Breeden (1979), and both the consumption
growth and the welfare valuation ratio growth in the recursive utility model of Epstein and Zin
(1989) based on Kreps and Porteus (1978) preferences. Common to these models is that the in-
vestor has an equal treatment of risk across disappointing and satisfying market conditions, where
disappointing market conditions correspond to periods where the market return or the growth in
fundamentals falls below a reference threshold.

The asymmetric nature and treatment of risk has long been well-accepted among practitioners
and academic researchers (Roy 1952; Markowitz 1959), and recently has led to new developments
in asset pricing and financial risk management, such as the concept of the value-at-risk and the
expected shortfall, as well as axiomatic approaches to preferences that allow investors to place
greater weights on disappointing market conditions in their utility functions. These developments
include the lower-partial moment framework of Bawa and Lindenberg (1977), the prospect theory of

choice of Kahneman and Tversky (1979), and more recently the theory of disappointment aversion



of Gul (1991), generalized by Routledge and Zin (2010) who embed them in the recursive utility
framework of Epstein and Zin (1989). These new theories suggest priced downside risks in the
capital market equilibrium.

Our study builds on generalized disappointment aversion (GDA) preferences. The disappointing
event (D) is endogenous to the model and corresponds to a situation where the market return
sufficiently falls and/or changes in market volatility sufficiently increase. The GDA investor exhibits
both risk aversion (i.e. aversion to regular betas on market return and on changes in market
volatility) and disappointment aversion (i.e. aversion to expected downside losses). We refer to the
combination of both risk and disappointment as the effective risk. We explicitly disentangle the
components of the asset effective risk premium that are due to risk exclusively, from those that are
due to disappointment exclusively, and from those that are due to the interaction between risk and
disappointment.

An investor with expected utility (henceforth EU) preferences requires two premiums to invest
in a risky asset. These two premiums are compensations for covariations of the asset payoff with the
market return, Cov (RS, ry), and with the changes in market volatility, Cov (Rf, AU%V). These two
premiums are exclusively due to risk aversion, since they are the only premiums required by a risk
averse but disappointment neutral investor. The GDA investor requires three additional premiums.
The first premium is a compensation for the covariance with the payoff of a binary cash-or-nothing
option, Cov (R, I (D)), where I (-) is the indicator function that takes the value 1 if the condition
is met and 0 otherwise. We show that this premium is exclusively due to disappointment aversion,
since it is the only premium required by a risk neutral but disappointment averse investor. The
second premium is a compensation for the covariance of the asset returns with a put option on the
market return, Cov (RS, rwI (D)), and the third premium is a compensation for the covariance with
a call option on changes in market volatility, C'ov (Rf, AJ?,VI (D)) These latter compensations are
not exclusively due to either risk aversion or disappointment aversion, as they are required if and
only if the investor is both risk averse and disappointment averse.

We explore the cross-sectional predictions of the model using all common stocks traded on

the NYSE, AMEX and NASDAQ markets covering the period from July 1963 to December 2010.



The main results of the paper relate to the cross-sectional pricing of options on the market return
and on changes in market volatility. Our empirical methodology uses portfolio sorts on individual
stock exposures to these options, controlling for exposures to the market return and to changes
in market volatility. Across individual stocks, we see a wide dispersion in sensitivity to options,
which generates cross-sectional variation in the risk premia attributed to these factors. We further
use cross-sectional regressions of Fama and MacBeth (1973) to estimate these factor risk premia.
Our main finding is that options on the market return and on changes in the market volatility are
highly significant factors in the cross-section of stock returns.

The estimated signs and magnitudes of factor risk premia associated with options on the market
return and on changes in market volatility are all consistent with the theoretical implications. The
put option has a positive risk premium. Assets that covary positively with the put option are
undesirable because they tend to have low payoffs when an already low market return gets worse.
In economic terms, our estimates suggest that a well-diversified single exposure to the put option
on the market return has an annualized Sharpe ratio of 1.09 on average.

We also find that the cash-or-nothing option has a negative risk premium. An asset that covaries
negatively with the cash-or-nothing option is undesirable because it has lower expected payoffs than
usual when disappointment sets in, that is an asset with a low relative downside potential. We
estimate that a well-diversified single exposure to the cash-or-nothing option yields an annualized
Sharpe ratio of 0.51 on average. Finally, the call option carries a negative risk premium. Assets that
covary negatively with the call option are undesirable because they tend to have low payoffs when
an unusually high market volatility level further increases. Interpreting the estimated premium
shows that a well-diversified single exposure to the call option on changes in market volatility has
an annualized Sharpe ratio of 0.86 on average.

We complement the existing theoretical and empirical asset pricing literature on how asset
prices are affected by downside risks. Practically, downside risks can be assessed through downside
betas. These downside betas measure the comovements between asset payoffs and priced factors
conditional upon disappointing market conditions, similar to the market downside beta, measured

empirically and examined in the cross-section of stock returns by Ang, Chen and Xing (2006). In



our setting, downside risks are interpretable as exposures to the put option on the market return
and to the call option on changes in market volatility. We explicitly derive the market downside
beta in terms of exposures to the market return, to changes in market volatility and to these two
options.

This paper also touches in particular on the recent literature on systemic risk. Brownlees and
Engle (2011) and Acharya et al. (2010) propose to measure systemic risk through the marginal
expected shortfall, which they estimate empirically and examine for the regulation of systemic
risk in US financial firms. In our setting, we interpret the exposure to the cash-or-nothing option
as the relative downside potential of the asset and show how it relates to the marginal expected
shortfall. Thus, instead of the regulation, we focus on the pricing of systemic risk. Furthermore,
being motivated by dynamic consumption-based equilibrium asset pricing and behaviorial decision
theory, our setup attempts to extend research on systemic financial risk onto many of the directions
advocated by Brunnermeier et al. (2010).

Ultimately, a dynamic asset pricing model with asymmetric preferences delivers a unified the-
oretical framework that can explain the empirical findings that asset sensitivities to the market
return and to changes in market volatility are priced (Ang, Hodrick, Xing and Zhang 2006; Adrian
and Rosenberg 2008), that the market downside beta is priced (Ang, Chen and Xing 2006; Hong
et al. 2006), and that the volatility downside beta and the relative downside potential of an asset
are priced. There is little or no empirical evidence regarding the two latter measures, and we view
this as an important contribution to the literature.

We also examine the empirical performance of our cross-sectional model on standard sets of
sorted portfolios: size, book-to-market, momentum and industry portfolios. Our results still com-
pare to those obtain on individual stocks. In terms of the pricing errors, our five-factor model with
market beta, volatility beta and exposures to the three options provides a significant improvement
over the standard CAPM model. It is comparable to the four-factor model of Carhart (1997), but
in contrast, it has the benefit of being motivated by dynamic consumption-based equilibrium asset
pricing and behaviorial decision theory.

We decompose the portfolio premia into parts attributable to each of the five factors from the



model. We find that the three options account for non negligible parts of the total premium required
to invest in stocks, and that they are relevant for interpreting differences in risk compensation across
size, book-to-market, momentum and industry portfolios. We finally show that our results are
robust to different data subsamples, to alternative measures of market volatility and to alternative
definitions of the disappointment region.

The balance of the paper is organized as follows. In Section 2, we present and develop the
theoretical setup from which we derive the implied cross-sectional model. Section 3 quantifies
the factor premia in a calibrated consumption-based setting. Section 4 contains the empirical
assessment of the model, while Section 5 describes how different measures of downside risk are

related to our model. Section 6 concludes. An appendix contains additional material and proofs.

2 Theoretical Setup

In this section, we derive the cross-sectional implications of an asset pricing model where the
representative agent has recursive utility with asymmetric preferences over disappointing versus

satisfying economic situations.

2.1 Assumptions on Investors’ Preferences

We consider a representative investor with generalized disappointment aversion preferences (GDA)
of Routledge and Zin (2010). Following Epstein and Zin (1989) and Weil (1989), such an investor

derives utility from consumption, recursively as follows:
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The current period lifetime utility V; is a combination of current consumption C}, and Ry (Vi41),

a certainty equivalent of next period lifetime utility. With GDA preferences the risk-adjustment



function R (.) is implicity defined by:
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where 0 < @ < 1 and 0 < k < 1. When « is equal to one, R reduces to expected utility (EU)
preferences, while V; represents the Epstein and Zin (1989) recursive utility. When « < 1, outcomes
lower than xR receive an extra weight, decreasing the certainty equivalent. Thus, the parameter
« is interpreted as a measure of disappointment aversion, while the parameter k is the percentage
of the certainty equivalent R such that outcomes below it are considered disappointing?.

With EU preferences, Hansen et al. (2008) derive the stochastic discount factor in terms of the

continuation value of utility of consumption, as follows:
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and where the second equality in (5) implies an equivalent representation of the stochastic discount
factor (4) derived by Epstein and Zin (1989), based on consumption growth and the simple gross
return Ry¢11 to a claim on aggregate consumption. We refer to this return as the market return,
which in general is unobservable. If v = 1/1, equation (4) corresponds to the stochastic discount
factor of an investor with time-separable utility and constant relative risk aversion, where only
changes in the level of consumption determines an asset premium. Otherwise, there is an additional
premium to compensate for changes in the welfare valuation ratio.

Following Hansen et al. (2007) and Routledge and Zin (2010), the intertemporal marginal rate

!'Notice that the certainty equivalent, besides being decreasing in +, is increasing in a (for 0 < o < 1),
and decreasing in k (for 0 < K < 1). Thus « and k are also contribute to effective risk aversion, but on
different forms than .



of substitution of an investor with GDA preferences is given by:

* ( 1+ 41 (Dyy1) ) ’ (6)
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where I (-) is an indicator function that takes the value 1 if the condition is met and 0 otherwise,

D, 11 denotes the disappointing event Z;,1 < k, and

{=——-1
o

is interpretable as the degree of investor’s aversion to expected downside losses.

Notice that the logarithm of M;, ., can also be written:

* 1
mip = —yAc — (’Y - ¢> Az (7)

where the processes in the right-hand of equation (7) are defined by

Aciy1 =In <Cé+1> =InCiy1 —InC; and Azyyyr =1n (%H> —1In (W) (8)
t

and represent respectively the change in the log consumption level, or consumption growth, and
the change in the log welfare valuation ratio, or welfare valuation ratio growth. It turns out
from the first equality in equation (5) that the disappointing event Z;;1 < k is equivalent to
Aciy1 + Azyip1 < Ink. Notice that the stochastic discount factor depends directly on current
consumption growth, and indirectly on future consumption growths through the welfare valuation
ratio growth.

The investor is worse off if the event Dy prevails at time ¢ + 1. In addition to risk aversion,
he has an aversion to this particular event if 0 < « < 1, which is disappointment aversion. The
investor will be better off if current consumption is high, and if the ratio of the continuation value
of his lifetime utility relative to current consumption is high as well. In this form, disappointing
economic conditions correspond to periods where the sum of growth rates of consumption and

welfare valuation ratio is less than a specific threshold, In k. In particular, if x = 1, disappointing



economic conditions correspond to periods where the sum of consumption and welfare valuation

ratio growth rates is negative.

2.2 Risk and Downside Risk Adjustments of Asset Returns

For every asset ¢ in the economy, optimal consumption and portfolio choice by the representa-
tive investor induces a restriction on its simple gross return, R; 1, that is implied by the Euler
condition:

Ey [My41Ri141] = 1. 9)

Let Rf¢41 and 7 denote the risk-free simple gross return and the real-world disappointment

probability, respectively defined by:

1

Rﬁt_’.l = m and 7T17t = Et [I (Dt+1)] . (10)

Alternatively, the Euler equation (9) implies that:

E;Q[ fiv1] =0, (11)

where Rf,t 411 = Rit+1 — Ryyy1 denotes the excess return of asset i over the risk-free return, and
where E;@ [-] denotes the conditional expectation operator associated with the effective risk-adjusted

density @ ¢+1 defined by:
Myt 11

Ey [Myi11] (12)

Qti+1 =

Effective risk stands for the combination of both risk and disappointment, where risk represents
regular covariances with consumption and welfare valuation ratio growths as usually understood,

and disappointment represents expected losses conditional upon the disappointing event.

Proposition 2.1 The Euler condition (9) can be re-written in one of the following forms:

H _ ) H,6D H _ H U H,D _ _H,U
Hiy = éﬂ-l,tuli,tv My = (1-a) T2 t 125 ¢ T M1, = QT 1 [ho; ¢, (13)



where the quantities /J,EIt, ,u%t and ngi,t are the expected excess return, the downside expected down-
stde loss and the upside potential respectively, after risk corrections, evaluated under different eco-

nomically meaningful probability densities. They are defined by:

iy = By (RS a] phie = EP [=RS 0 | Dega], pyis = B[RSy | Seva],  (14)

where Si11 denotes the satisfying event Ziy1 > Kk or equivalently Aciy1 + Azyp1 > Ink, and
where Ef'[], EP [ | Dyy1] and EY |- | Sii1] are respectively the conditional expectation operators
associated with the risk-adjusted density Hyy ., the risk-adjusted downside density Dy, ., and the

risk-adjusted upside density Uy, q, defined by:2
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The remaining quantities in (13), w]{']ft and Wgt, are respectively the risk-adjusted disappointment

and satisfaction probabilities defined by:
Ty = B [I(De)] and myy = B I (Seq1)] = 1 — 'y (16)

The proof of Proposition 2.1 can be found in the appendix.

If the investor is disappointment neutral, o = 1, then H, ; coincides with the effective risk-
neutral distribution Q¢ ¢41. Indeed, we have from the first equation in (13) that u?}t =0ifa =1.
Notice that ,u%t is the expected downside loss, adjusted for downside risk. The first equation
in (13) shows that the risk-adjusted expected excess return is proportional to the risk-adjusted
disappointment probability times the downside risk-adjusted expected downside loss, where the
coefficient of proportionality is the degree of loss aversion ¢. Disappointment averse investors

dislike assets with ,u%’t > 0 since they might face large losses in these assets when disappointment

2Since we have E, [Ht’ftH] =1, B [Df 41 | Diya] = 1 and E; [Uf 1 | Si1] = 1, then Hf, , can be
thought of as adjusting the overall distribution, Dy, as adjusting the downside distribution (or the distri-
bution conditional upon disappointment), and U{ 141 as adjusting the upside distribution (or the distribution
conditional upon satisfaction).



sets in, and it requires an additional premium to get them holding these assets. This in turn
translates into a positive uﬁlt.

We have shown that if the investor is disappointment averse, then the risk-adjusted expected
excess return MJEIt is not necessarily equal to zero, and it will not be in general. This is because
simple risk corrections to asset prices, which are driven by covariances of their payoffs with the
marginal utility of wealth, are not enough to compensate an investor who is particularly sensitive
to downside losses. The higher the disappointment aversion (the lower « or equivalently the higher
the degree of loss aversion ¢), the higher the relative compensation for expected downside losses.

We also notice that M%t is the upside potential, adjusted for upside risk. The second equation in
(13), which we recall is equivalent to the first, shows that the risk-adjusted expected excess return
is proportional to the risk-adjusted satisfaction probability times the upside risk-adjusted upside
potential, where the coefficient of proportionality is one minus the coefficient of disappointment
aversion. Most importantly, this equation shows that investors require an additional premium
(,uﬁlt > 0) for holding assets with ,u%t > 0. At a first glance, it might be hard to understand why
investors may require an additional premium to invest in an asset with good upside potential.

To understand this, we now refer to the third formulation of the Euler condition, the third
equation in (13). This equation shows that there is a no-arbitrage condition that relates expected
downside losses to the upside potential. It shows that the risk-adjusted disappointment probabil-
ity times the downside risk-adjusted expected downside loss is proportional to the risk-adjusted
satisfaction probability times the upside risk-adjusted upside potential, where the coefficient of
proportionality coincides with the coefficient of disappointment aversion. So, in equilibrium, assets
with good upside potential are exactly those with large expected downside losses. Where there
is an upside potential, there are always expected downside losses. Upside potential and expected

downside losses are just the opposite sides of the same coin.
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2.3 Cross-Sectional Implications of GDA Preferences

2.3.1 Substituting out Consumption

It is also important to notice from the second equality in equation (5) that the log market return

is related to consumption growth and to the welfare valuation ratio growth through

1
Wi+l = — Inéd + ACt-i-l + <1 - 1/1> AZV7t+]_. (17)

In this case, equation (7) becomes

* -1
mt,tJrl = (1 — ’}/) Ind — ’yrmt+1 — <7¢> sz7t+]_, (18)

and the disappointing event Z; 1 < k is equivalent to ry 1 + (1/¢) Azy11 < In(k/9).

This latter equation reveals that, if the elasticity of intertemporal substitution is infinite, then
the logarithm of My, reduces to m;, ; = (1—7)Ind — yrw,41, and the disappointing event
Dy is just equivalent to the market log return falling below a fixed specific threshold given by
investor’s preferences, ryw 1 < In(x/J). So, for a representative investor who perfectly substitutes
out consumption through time, the market return is the only factor determining both systematic
risk and disappointment.

As we pointed out earlier, the market return 7y is not directly observed by the econometrician.
The return to a stock market index is sometimes used to proxy for this return as in Epstein and
Zin (1991). Also, the welfare valuation ratios zy; = In(V;/Cy) and zr ¢ = In (R (Vig1) /Cy) are
unobservable. Following Hansen et al. (2008) and Bonomo et al. (2011), we can exploit the dynamics
of aggregate consumption growth and the recursion (2) in addition to the definition of the certainty
equivalent (3) to solve for the unobserved welfare valuation ratios.

From equation (17), it follows that stochastic volatility of aggregate consumption growth is a
sufficient condition for stochastic volatility of the market return. In all what follows, this additional
assumption is coupled with our assumption on investors’ preferences. More specifically, assume for

example that the logarithm of consumption follows a heteroscedastic random walk as in Bonomo
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et al. (2011), were the stochastic volatility of consumption growth is an AR(1) process that can
be well-approximated in population by a two-state Markov chain as shown in Garcia et al. (2008).

Then, it can be shown that the welfare valuation ratios satisfy

2y = Pvo + <on—<712/v7t and 2r; = Yro + @RUUIQ/v,t (19)

were 0‘2,[,7lt = Vary [rwe+41) is the conditional variance of the market return, and where the drift
coefficients ¢y and prg and the loadings ¢y, and pr, depend on investor’s preference parameters
and on parameters of the dynamics of consumption volatility. In this case, equation (18) becomes

-1

* * "Y
My 41 = (1=)Ind* —yrwep1 — <

w ) SOVUAUIQ/VJS—H? (20)

and the disappointing event Z;11 < & is equivalent to rw41 + (1/9) @VUAJ%7t+1 < In(k/d%),
where Aa%‘,’t = U%V’t N gpa%v’t and where
PRo

1
Ino* =Ind + — (pvo — pro) and @ = )
¢ PVeo

Our definitions and notations for Azy;41 and Aa%v’t 41 bresume that 2z, ~ 2y, and ¢ =~ 1. We
later illustrate in a calibration exercise that this indeed is the case. This shows that changes
in the welfare valuation ratio can empirically be proxied by changes in stock market volatility,
where volatility can be estimated using a generalized autoregressive conditional heteroscedasticity
(GARCH) model, can be computed from high-frequency index returns (realized volatility), or can
be measured by the option implied volatility (V1X).

It should finally be noted that the loading coefficient ¢y, of the welfare valuation ratio onto
the market volatility must be negative to be consistent with the empirical evidence reported by
Bansal et al. (2005) that asset markets dislike macroeconomic uncertainty, and also to corroborate
the theoretical predictions of long-run risks models featuring a time-varying consumption volatility
process. In all what follows, we take as given that ¢y, < 0 and will show later in the calibration

assessment that this important theoretical implication of the model is met.
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2.3.2 Cross-Sectional Representation of Expected Returns

Since the three equations in (13) are all equivalent, analyzing the cross-section of asset returns
requires only one of them, and we will then focus on the first equation from now on. In order
to derive the implied cross-sectional model in a linear beta form as common in the cross-sectional
asset pricing literature, we consider the following approximations:

Hip = 140; (m;tJrl — E; [m;tk,tJrl]) (21)

Dy =1+07, (m;tﬂ — Ey [m;tﬂ ’ Dt+1})
where the coefficients 6] and 607, are positive and ensure that the volatility and the downside
volatility of My, remain unchanged under the first and the second approximations respectively.

Notice that the risk-adjusted expected excess returns ,ugﬂt may be written as follows:

/’L?It = ;U’Z',t —|— CO'Ut (H;:t-l,-la Rit-‘rl)

= pit — Y0 owe — o ovelioix

(22)
where p;; = Ey [thﬂ} is the expected excess return, while o;1; = Covy (thﬂ, 7‘W,t+1> denotes
the covariance between excess returns and the market return, and o;x; = Cov; (th 1 Aoy, +1>
denotes the covariance between excess returns and changes in market volatility.

We show that the risk-adjusted expected downside loss N]%,t may be written

1 * *
Mﬂ&,t = —Mit — —— [(1 + 791,t#1W,t + <7 ) SDVaeLt,UlX,t) OiD,t
T1,t ¢
-1

(23)
* Fy *
—791,tUiWD,t - ( 0 > ‘PVGQL,:%‘XD,t]

where o;wps = Couy (Ritﬂ,rW’tHI(DtH)) and o;xp: = Couy (RﬁtH,AU%WHI(DtJrl)) and
oip,t = Covy (Rf,t s (Dt+1)) denote covariances between excess returns and three outcomes that
are contingent to the disappointing event, and where the quantities piws = Et [rwe+1 | Di41] and
wixe = By [Aa%w 41 | Dt+1} represent the downside means of the market return and changes in

market volatility, respectively.
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Substituting (22) and (23) into the first equation in (13) and solving for expected excess returns,

we show that the cross-sectional risk-return tradeoff may be written in linear covariance form as

N T
Wit & PW,iOiwt + PX t0iX,t + PDt0iDt + PWDLOiWD,t + PXDtTiXDt = PFrOiFt (24)

where the corresponding risk prices are given by

0; d 0; <’y — 1)
= an - 9
Pwe =97 Iy (1+ m)7 PXt=1% by (14m) \ @ wVe
C(1+m) 7-1
- _ 1+ ~0* 07
PDt T4 s (L + ) + 01 spawe + o) Pvobixe | (25)
(I +m) by, and (L +m) 07, <7—1>
pWD7t 1 + éﬂ‘l}t (1 + nt)’y pX’D,t 1 + Z']Tl’t (1 _|_ 'f}t) 'IJZ) ()OVU

The quantity n; represents the relative disappointment probability spread given by

H
™
N = m’t — 1 =07 (pwy — pawye) + (71/}) ovel; (Lxt— pixe), (26)

;t

where pyw; = Ey [rwyy1] and px s = Ey [Aa%w +1} are the means of the market return and changes
in market volatility, respectively.

Equation (24) corresponds to a linear multifactor model representation of expected excess re-
turns. In the unrestricted case, we have a five-factor model. In addition to the market return
and changes in market volatility which are shown to be cross-sectional pricing factors in Ang,
Hodrick, Xing and Zhang (2006) and Adrian and Rosenberg (2008), three additional factors com-
mand a risk premium. These factors are all payoffs which are contingent to the disappointing
event, making them interpretable as options. Recalling that ¢y, < 0, the disappointing event,
w1+ (1/1) cpv(,Aa%V,tH < In(k/6*), may occur due to a fall in the market return or an increase
in changes in market volatility, or both. This means that the three options mature in-the-money
if the market return falls or if changes in market volatility increase. For this reason, depending on
the nature of option payoff, they can be seen as either put options on the market return or call
options on changes in market volatility.

More specifically, the factor I (Dyy1) is a binary cash-or-nothing option. It is both interpretable

14



as either a binary cash-or-nothing put on the market return or a binary cash-or-nothing call on
changes in market volatility. The factor ry 411 (Dyy1) would then be a put option on the market
return, since the option payoff depends on the market return. Similarly, the factor Aa%,vyt il (Di+1)
would be seen as a call option on changes in market volatility, since the contingent payoff depends
on changes in market volatility. We further characterize these options in some special cases.
Consider the restricted case where 1 = co. We have already shown that the downside event
reduces to rw 41 < In(k/J), and now the relative disappointment probability spread also reduces
to nwe = v0; (pw — pawye), where piwe = Ei [rwet1 | rwes1 < In(k/6)]. The restriction ¢ = oo
implies that px ¢ = pxp+ = 0. Thus, changes in market volatility and the call option are not priced.
The cross-sectional model then reduces to a three-factor model with the market return, the binary

cash-or-nothing option and the put option. The associated risk prices are given by

0%
pVV’t o 1 + fﬂ'l’t (]. + 771/{/’15)7 (27)
(14 nw) (1 +nwe) 07,
Pp: =

] (14707 pawy) and pwpy =

_l—i-gﬂ'l,t (1+77W,t 1+£7rl,t (1+77W,t)7

To further illustrate our interpretation of the new factors in the special case 1 = 0o, assume

for example that x = 0. Then, the disappointment event becomes ry;41 < 0 and we have

max (W; — W41, 0)
Wi ’

I(DtJr]_) = I(Wt+1 < Wt) and — TVV,t+1I (Dt+1) = max (wt - th,O) ~

where W, denotes the aggregate wealth and w; = In W;. Clearly, this shows that our two option
factors represent a regular binary cash-or-nothing put option and a conventional European put
option on aggregate wealth, with a maturity of one period and a strike equal to current wealth.

It is important to determine what characteristic of investors’ behavior is responsible for a com-
mand of a premium related to a specific factor at the market place. Equations (25) and (27) reveal
that py; # 0 if and only if v # 0, regardless of the disappointment aversion parameter ¢. This
shows that compensation for the covariance with the market return is exclusively due to investors’
risk aversion. The asset pricing literature generally agrees on investors’ risk aversion parameter

v > 1. Taking this as given, it then follows from equation (25) that px; # 0 if and only if ¢ # oo,
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regardless of the disappointment aversion parameter £. Thus, we can argue that compensation for
the covariance with changes in market volatility is exclusively due to imperfect intertemporal sub-
stitution of consumption. Investor’s risk aversion (v > 1) and imperfect intertemporal substitution
of consumption (¢ < oo) both imply that py¢ > 0 and px; < 0. Thus, consistent with the existing
theoretical and empirical literature (see for example Ang, Hodrick, Xing and Zhang 2006; Adrian
and Rosenberg 2008), investors require a premium for a security that has a low return when the
market return is low (o > 0), but are willing to pay a premium for a security that pays off when
changes in market volatility are high (o;x+ > 0).

On the other hand, equations (25) and (27) also reveal that pp; # 0 if and only if £ # 0,
regardless of other preference parameters. This shows that compensation for the covariance with
the cash-or-nothing option is exclusively due to disappointment aversion. This model-implied
premium when ¢ > 0 stems from the preference of investors for securities with high returns when
the disappointing event occurs (o;p ¢ > 0).

We also observe that, pyyp+ # 0 if and only if both v # 0 and £ # 0. This shows that neither risk
aversion alone, nor disappointment aversion alone suffices to explain the requirement for investors to
be compensated for the covariance with the put option on the market return. Similarly, presuming
that v > 1, then pxp; # 0 if and only if both ¥ # oo and £ # 0. It turns out that neither imperfect
intertemporal substitution of consumption alone, nor disappointment aversion alone suffices to
explain the requirement for investors to be compensated for the covariance with the call option on
changes in market volatility. Investor’s risk aversion (y > 1), imperfect intertemporal substitution
of consumption (1) < oo) and disappointment aversion (¢ > 0) all imply that pyp: > 0 and
pxp,t < 0. This shows that investors require a premium for a security that has a low return when
a low market return in a disappointing state further decreases (o;wp, > 0), and are willing to pay
a premium for a security that pays off when large changes in market volatility in a disappointing
state further increase (o;xps > 0).

The cross-sectional risk-return relation (24) is finally equivalent to:

Li ~ Ny Biry (28)
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where ;r; is the vector containing the multivariate regression coefficients of asset excess returns

onto the factors, and A\r; is the vector of factor risk premiums, respectively given by
iFt = 2p,OiFt Fit = LEFtPE¢
B 2 Féa and A Yrp (29)

where o5, is the vector of covariances of the asset excess return with the priced factors, and where
Y ry is the factor covariance matrix. It is important to note that if the covariance between the
daily return on the market and daily changes in the volatility of the market (Cov(rw,, Aa%,vyt)) is
negative or sufficiently close to zero®, than the signs of the elements of Ag; are the same as of the
corresponding elements of pr;. This beta representation nests both the five-factor case (1 # o)
and the three-factor case (¢» = c0). An extensive empirical investigation of these betas for the

cross-section of stock returns will be carried out in subsequent sections.

3 Calibration Assessment

In this section, we calibrate an endowment economy and discuss the major quantities derived
analytically in previous sections. The focus will be on the factor risk premia Ar implied by the
model, which we will further compare to the values estimated in an extensive cross-sectional study
using actual data in Section 4.3. We follow Bonomo et al. (2011) in modeling and calibrating
the endowment process, and solving for asset prices in closed form. We assume that consumption
growth is unpredictable and that its conditional variance fluctuates according to a Markov variable
s¢, which can take a different value in each of the NV states of nature of the economy. The sequence

s¢ evolves according to a transition probability matrix P defined as:
Pl = pijlicijen s Pij = Prob(sppn =7 | s =1). (30)

As in Hamilton (1994), let ¢; = e,, where e; is the N x 1 vector with all components equal to zero

but the jth component equals one.

3The later is supported in our data.
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Formally, consumption growth is modeled as follows:

Acii1 = fle + OtEc i1 (31)

where .41 | (ecr, T < t;Gm,m € Z) ~ N (0,1) and where oy = m is the volatility of con-
sumption growth. The scalar u. is the expected consumption growth, and the vector w. contains
consumption volatility in each state of nature, where the component j of a vector refers to the
value in state s; = j. Given these endowment dynamics, we solve for welfare valuation ratios in
closed form, which we combine to consumption growth to derive the endogenous market return and
variance processes.

To calibrate the model, we assume two states for the Markov chain so that consumption con-
ditional variance o? behaves like an AR(1) process with mean s, persistence ¢, volatility o,
positive skewness and zero excess kurtosis. The two states of the economy naturally corresponds
to alow (L) and a high (H) volatility states. We calibrate the consumption process at the monthly
decision interval to match actual sample mean and volatility of real annual US consumption growth
from 1930 to 2010.

The mean of consumption growth is calibrated to p. = 0.15 x 1072 and its volatility, which is
equal to /i, is calibrated to \/u, = 0.7305 X 1072, The volatility of consumption volatility is
calibrated to o, = 0.6263 x 10~* and we set the persistence to ¢, = 0.995 in our benchmark case.
We will further study the sensitivity of the quantities when we vary the persistence ¢, as well as
preference parameters. In our benchmark case, the implied state values of expected consumption
growth are p. (L) = pe (H) = 0.15%. The state values of consumption volatility are o (L) = 0.46%
and o (H) = 1.32%. The state transition probabilities are pr;, = 0.9989 and pyy = 0.9961, and
the corresponding long-run probabilities are 7y, = 0.7887 and 7y = 0.2113.

We set the value of the risk aversion parameter v to 3.75 and the elasticity of intertemporal
substitution % to 1.5, and we consider several scenarios were we vary the values of the other
preference parameters. In our benchmark scenario, we consider § = 0.9979, a = 0.3 and x = 0.992.

All the scenarios are shown in Table 1. The model-implied annualized (time-averaged) mean,
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volatility and first-order autocorrelation of consumption growth are respectively 1.80%, 2.21% and
0.25%, and are consistent with the observed annual values of 1.88%, 2.21% and 0.46%, respectively.

In Panel A, we observe that across all scenarios, the annualized (time-averaged) mean risk-
free rate varies between 0.74% and 1.97%, and the corresponding volatility between 1.69% and
4.78%. These scenarios’ values are consistent with the estimated risk-free rate mean of 1.21% and
volatility 4.10%. In our base case, the values are 1.31% and 2.46%. Panel B shows that the welfare
valuation ratio loads negatively on market volatility, consistent with the economic intuition that
asset values and consequently investor’s wealth and welfare fall in periods of high uncertainty in
financial markets. Panel C shows that the disappointment probability is higher in periods of high
volatility versus low volatility periods. Also, increasing the parameter s increases the number
of disappointing outcomes and consequently the disappointment probability. In our base case,
the disappointing event has a probability of 1.22% in the low volatility state, 21.05% in the high
volatility state and 5.41% in the long run.

Panel D shows monthly model-implied factor risk premia. These values will be confronted to
their data counterparts estimated in the next empirical section. The market factor risk premium
Aw is larger in the high volatility state and smaller in the low volatility state. The expected market
risk premium ranges between 0.0051 and 0.0075. Similarly, the factor premium associated to the
cash-or-nothing option Ap is larger in the high volatility state versus the low volatility states. Its
expected value ranges from -0.2560 to -0.1175. This premium is negative as the relative downside
potential of a risky asset is negative, leading to a positive compensation. To the contrary, the
volatility factor risk premium A is larger in the low volatility state versus the high volatility state,
and its expected value ranges between -1.16E-5 to -6.29E-6. The volatility factor risk premium is
also negative as a risky asset with negative volatility beta commands a positive volatility premium.
The other factor risk premia are associated to the put option on the market return (A\yp) and the
call option on changes in market volatility (Axp). Their expected values ranges between 0.0031
and 0.0061, and between -1.12E-5 and -5.23E-6. In the next section, we empirically estimate these
average risk premia using observed individual stock returns and compare the estimated values to

the model-implied values.
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4 Empirical Assessment

The cross-sectional risk-return relation (24) is in the centre of our empirical assessment:

Wit = PW,iOiw, + PX,t0iX,t + PDt0iDt + PWDLTiwD,t + PXD,t0iXD,t (32)

where o;¢; denotes the covariance between the excess return of asset ¢ and factor f, while p;; is
the price of risk given in (25) for different factors. In the general case there are five priced factors
given by

= ( rwe Aoy, I(Dy) rwel (Dy) Aagutf(pt)) : (33)

We refer to this as the GDAS5 (generalized disappointment aversion) model throughout the rest of
the paper. In the restricted case ¥ = +00, the number of risk factors reduces to three (the GDA3

model):
Fl = ( rwe (D) rwal (Dy) ) : (34)

So far, our definition of the disappointing event has been very general (defined in terms of
the parameters of the model). However, we have to be more specific to be able to carry out the
empirical analysis. We have decided to define the disappointing event as simply as possible: D;
corresponds to ry; < 0, i.e. when the log market return falls below zero. In the case of the GDA3
model, the downside event is ry ¢ < In(x/d), so our definition used in the empirical analysis is
equal to assuming x = §. In the more general case of the GDA5 model, the disappointing region is
defined as ry + (1/9) @VUAU%W <In(k/6*). So, assuming ry; < 0 means that we disregard the
second term from the left hand side of the inequality, and assume k = §*. We have to emphasize
that our results do not hinge on this particular definition of the disappointing event. In the section
of robustness checks (4.3.3) we investigate how the results change if disappointment regions of the

form*

o
rwe —a ——Aojy, <b (35)
O-AJ‘Q/V

4This form corresponds closely to the definition of the downside event in the case of the more general
GDAJ5 model. We consider different values of the parameters a and b.

20



are considered. We conclude that our results are very robust to changes in the definition of D;.

4.1 Data

Following common practice in the literature, we test our model using all common stocks (CRSP
share codes 10 and 11) traded on the NYSE, AMEX and NASDAQ markets. The source of the
data is the Center for Research in Security Prices (CRSP). The analysis covers the period between
July, 1963 and December, 2010.

The market return is the value-weighted average return on all NYSE, AMEX, and NASDAQ
stocks from CRSP, while the risk free rate is the one-month US Treasury bill rate from Ibbotson
Associates. Both time series are obtained from Kenneth R. French’s data library®. To follow the
implications of our theoretical model as closely as possible, we use the log market return (not excess
return) in our empirical tests. However, it is worth noting that the results are basically unchanged
when the simple market excess return is used instead.

In order to be able to test the GDA5 model, we need to measure changes in the volatility of
the market return. Several approaches have been used for measuring market volatility in studies
analyzing the cross-section of stock returns: Ang, Hodrick, Xing and Zhang (2006) use the VIX
index, Adrian and Rosenberg (2008) estimate a model with conditional heteroskedasticity, while
Bandi et al. (2006) use realized volatility. We have chosen to use the model based approach in
our main specification. The most important advantage of this approach is that it lets us use the
entire sample period®. We obtain our measure of market volatility by fitting an EGRACH model
(introduced by Nelson; 1991) to the daily market return series using the whole sample period. The
exact model specification and the coefficient estimates are presented in Table 2. In the section
for robustness checks (4.3.3), we show how the results change if alternative measures of market
volatility are considered.

When presenting our results, we will compare the performance of our model to the four factor

model of Carhart (1997). Daily return series of the factors were collected from Kenneth R. French’s

Shttp://mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html
6We can obtain daily VIX and realized market volatility data starting from 1986 only.
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data library.

4.2 Portfolio sorts

A lot of studies analyzing the cross-section of stock returns use portfolio sorts as their main empirical
tool. They sort stocks into portfolios based on a specific measure of risk, and then examine the
patterns in the average returns of these portfolios. We also start by presenting results of portfolio
sorts.

We closely follow the methodology of Ang, Chen and Xing (2006): at the end of each one-year
period at month ¢, we calculate realized covariances from (32) using daily data over the previous
12-month period. For each stock, we also calculate the average monthly excess return over the same
12-month period. Stocks are then sorted into five quintiles based on their realized covariances, and
the average returns on these quintile portfolios are calculated. We repeat the same procedure for
the next month, and continue throughout the whole sample period. Finally, we take the time-series
average of the portfolio returns. According to Ang, Chen and Xing (2006) this use of overlapping
information is more efficient, but induces moving average effects. To account for this, we report

t-statistics that are adjusted using 12 Newey and West (1987) lags”.

4.2.1 Sorting on realized covariances

The first five columns of Table 4 present average annualized returns of portfolios created by sorting
stocks based on their realized covariances with our factors. The first column shows the results when
oW = Cov(Rit, rw,) is used. Note that this is numerically equivalent to sorting on the standard
CAPM beta® . We can see a monotonically increasing pattern between realized average returns
and realized beta for both the equal- and value-weighted portfolios. This is consistent with py > 0
indicated by theory. Also, these findings (both the pattern and the size of the spread) are in line

with the literature (see for example Ang, Chen and Xing; 2006 or Ruenzi and Weigert; 2011).

"Note also, that the results of the portfolio sorts are essentially the same if we use non-overlapping
one-year periods. The results are available upon request.
8Sorting on o; = Cov (Ri“rw’t) is equivalent to sorting on fBicapn from the regression Rf, = a; +

. Cov(R; ,,rw,t . . .
Bicapm - Twit + Eit, since Bicapm = W, and the denominator does not vary in the cross-section.
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In the second column, stocks are sorted into portfolios based on their covariance with the
binary cash-or-nothing option, o;p = Cov(Rf;, I(Dy)). As it is shown in the appendix (A.1), this is
numerically equivalent to sorting on E[R{, | Dt — E[RS ], the relative downside potential. A factor
like this has not been studied in the cross-section of stock returns so far. An asset with a low o;p
is undesirable because it has lower expected payoffs than usual when disappointment sets in. So,
investors need compensation for holding stocks with low relative downside potential. In line with
this reasoning, we can see monotonically decreasing returns when we go from low to high values of
the risk measure. The difference "H-L” is significant at the 1% level for equal-weighted portfolios,
and at 10% level for the value-weighted portfolios.

The third column presents portfolios when stocks are sorted on their covariance with the payoff
of the put option on the market return, o;jp = Cov(Rit, rwl(Dy)). Assets that covary positively
with the put option are undesirable because they tend to have low payoffs when the market is doing
bad. In line with this and the positive sign on pyp, we can see a monotonically increasing pattern
across portfolios. This measure produces the largest spread in portfolio returns if we consider
equal-weighted portfolios.

The fourth covariance risk measure is o;x = Cov(Rfyt,Aa%V’t), i.e. the covariance with the
change in the variance of the market. Factors similar to this have already been studied in the
context of the cross-section of stock returns (e.g. Ang, Hodrick, Xing and Zhang (2006)). In line
with their results and with px < 0, we find that stocks with high sensitivities to innovations in
market variance have low average returns.

The fifth column shows the results if the stocks are sorted on their covariance with the payoff
of the call option on changes in market volatility, o;xp = C’ov(RZt,AU%V,tI (D). So far, not
much attention has been devoted to this factor in the literature. Theory indicates that pxp <
0. Accordingly, wee can see monotonically decreasing returns in Table 4, i.e. stocks with high
sensitivities to innovations in market variance in bad times have low average returns. Note, that
this beta measures produces the largest spread in portfolio returns if we consider value-weighted
portfolios, and the "H-L” difference is highly statistically significant regardless of the weighting

scheme.
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The general conclusion is that all the five risk measures generate monotonic patterns in the
average returns of sorted portfolios. Moreover, these patterns are in line with the signs on the
prices of risk suggested by theory (25). However, there is one problem with these measures that
makes it hard to disentangle their effects: they are highly correlated with each other. First, let us
concentrate on the upper left corner of Table 3. The correlations between o;y/, o;p, and o;wp are
very high, even the lowest (in magnitude) correlation is -0.86. This is in line with the literature:
both Ang, Chen and Xing (2006) and Post et al. (2010) find that the regular CAPM beta and
measures of downside market risk are highly correlated”. Also the two measures of sensitivity to
changes in market variance (o;x and o;xp) have a correlation of 0.68.

One way to disentangle the effect of different factors is to calculate the risk measures together,

in a multivariate framework, instead of calculating them separately.

4.2.2 Sorting on multivariate betas

Instead of calculating the realized covariances with our factors separately, we run the following

regression (corresponding to our GDA5 model)
RS, = ai+ Biw - rwi + Biwp - rwal (De) + Bip - 1(Dy) + Bix - Aoy + Bixp - Aojy I(Dy) + &), (36)

and use the estimated J;¢-s in the same sorting exercise (following the same methodology) as above.
Note that estimating betas from the above regression exactly corresponds to the first equation in
(29). In this subsection we are focusing only on the betas calculated using all the five factors from
the GDA5 model. However, we would like to note that if the first three betas (Byw, Biwp, and
Bip) are calculated from the GDA3 model, the results are very similar. For all the three factors,
the correlation between (;r calculated from the GDA3 and the GDA5 models is 0.99.

Table 3 also shows the average cross-sectional correlations between the betas calculated from
the regression (36). The general message is that the correlations between these betas are much
lower in magnitude than the correlations we have seen in between the o;; measures. It is important

to note though, that ¢ and S corresponding to the same factor can be very different, because now

9We will discuss in Section 5 the relationship between our measures and measures of downside market
risk that have been used in the literature.
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the measures are calculated together.

The results of the sorting exercise using these betas are presented in the last five columns of
Table 4. As we have pointed out earlier, the signs of the A-s in (28) are the same as the signs of
the corresponding p-s, so we expect the same patterns that we have seen when sorting based on
realized covariances. (; generates a modest spread across the portfolios, but the "H-L” difference
is not significant at the 5% level. When sorting stocks into portfolios based on f3;p, the average
return on these portfolios seem to be constant. This means that §;p fails to create the desired
spread in the average returns. S;wp, on the other hand, is able to create a nice monotonically
increasing pattern in the average returns. The "H-L” difference is statistically significant for both
the equal- and the value-weighted portfolios. When stocks are sorted based on their sensitivity to
changes in the variance of the market (3;x), we can see the decreasing pattern suggested by the
theory. The difference between portfolio 5 and portfolio 1 is significant at the 5% level for both
weighting schemes. Lastly, 8;xp also delivers the decreasing pattern predicted by the theory, with
highly significant "H-L” differences.

All in all, we can conclude that apart from S;p, all the betas create the expected patterns in
the average returns of sorted portfolios. However, sorting stocks into portfolios is not the most
appropriate tool in this case, since our model implies a specific relationship (the GDA3 or GDA5
model), and not one specific measure. Thus, we have to estimate the effects of several measures
of risk at the same time. Based on this argument, our main tool for the empirical analysis will be

Fama-MacBeth (1973) (FM) regressions.

4.3 Fama-MacBeth regressions

The starting point is the beta-form of our cross-sectional risk-return relation (28). Calculating
the betas from this relationship (8ip: = E;ﬁai F¢) is numerically equivalent to running the time-
series regression (36) for each asset ¢ in the first stage of the FM procedure. The second stage
of the FM procedure (the cross-sectional regressions) corresponds to estimating the relationship
Wit R )‘;,t/@i F¢- As the result of the Fama-MacBeth procedure, we will obtain the average lambdas

over the sample period (E [Apy]).
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We would like to take into account the conditional nature of the cross-sectional relationship in
(28). We follow the spirit of Lewellen and Nagel (2006), and instead of trying to determine the
appropriate set of conditioning variables, we use short-window regressions to calculate the factor
loadings. At the end of each one-year period at month ¢, we estimate the conditional betas 3;r;
using daily data from the last twelve months (¢ — 11,...,¢). This approach will result again in
overlapping information when calculating the conditional factor loadings. To account for this, we

report Newey-West (1987) adjusted standard errors in all our tests'C.

4.3.1 Individual stocks as base assets

The majority of asset pricing studies testing expected return relations in the cross section use
portfolios. However, Ang et al. (2010) have recently argued that creating portfolios destroys im-
portant information and leads to larger standard errors. They conclude their study by pointing out
that using individual stocks permits more efficient tests of whether factors are priced, and there
should be no reason to create portfolios. Cremers et al. (2011), Lewellen (2011) and Ruenzi and
Weigert (2011) are recent examples focusing on individual stocks as base assets in Fama-MacBeth
regressions. We follow this strand of the literature by considering individual stocks from the CRSP
universe as base assets for the FM regressions. We consider these as our main results. However,
we also present results with portfolios as base assets in Section 4.3.2.

Another decision to make is whether to use contemporaneous returns (i.e. returns over the
same interval on which the conditional betas are estimated) in the cross-sectional regressions, or
to use future returns (i.e. returns after the period when betas are estimated). Ang, Hodrick,
Xing and Zhang (2006) argue that in order to have a factor risk explanation, there should be
contemporaneous patterns between factor loadings and average returns. There are numerous studies
in the asset pricing literature focusing on this contemporaneous relationship (e.g. Ang, Chen and
Xing (2006), Cremers et al. (2011), Fama and MacBeth (1973), Lewellen and Nagel (2006) and
Ruenzi and Weigert (2011), among others). In line with this literature, we obtain our main results

using this contemporaneous approach: at every month ¢, we relate the conditional betas to the

1ONote again, that the results are essentially the same if we use non-overlapping one-year periods. The
results are available upon request.
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average monthly excess returns over the same period on which the betas are estimated (months
t—11,..,¢t).

Results from analyzing the contemporaneous relationship between factor loadings and returns
using individual stocks as base assets are presented in Table 5. Our theory implies that there
should be no constant in the cross-sectional regressions. However, since there is no consensus in the
empirical literature whether to include the constant or not, we report our specifications both with
and without the constant term. The top panel of Table 5 presents the lambda estimates together
with their statistical significance and the adjusted R? for the given model (where applicable). The
lower panel of the table tries to give a picture about the economic significance of the results. It
displays average annualized Sharpe ratios of well-diversified single exposures to the given factors.
These are hypothetical portfolios that are exposed to the risk coming from only one of the factors,
and are immune to the risk represented by the other factors. To have a benchmark in mind, the
Sharpe ratio of the market portfolio using the same methodology is 0.557.

The first two columns of Table 5 correspond to the basic CAPM, where the only priced factor
is the market return. In both cases (with and without a constant) we see a significant positive
lambda on the market factor. We note also, that the constant is significant at the 10% level when
included in the estimation.

Let us focus now on the results from the GDA5 model, presented in columns 5 and 6. We
consider these as the main results of our empirical investigation. When the constant is included, all
the five lambda estimates are significant at the 1% level, and the estimated constant is no longer
significant. Regarding the signs and magnitudes of these estimates: they closely correspond to
the predictions of our theoretical model. If we compare these estimates to the E[A] values from
Panel D of Table 1, we see that they are surprisingly close to each other. In economic terms the
two factors with the biggest effect are those that arise only if the investor is both risk averse and
disappointment averse (Aywp and Axp). A well-diversified single exposure to the put option on the
market return has an average annualized Sharpe ratio of 1.09. The Sharpe ratio of the exposure
to the call option on changes in market volatility is 0.86 on average. It seems that exposure to the

cash-or-nothing binary option has the lowest effect of all the five factors with a Sharpe ratio of 0.5.
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When the constant term is excluded from the estimation, Ax loses its significance and decreases in
magnitude. All the other estimates seem to be robust to the exclusion of the constant.

Columns 3 and 4 of Table 5 present the results for the GDA3 model. The results are very
similar to the corresponding lines of the GDA5 model. This implies that leaving out the factors
connected to changes in market volatility from the model does not change the effect of the other
three factors.

Columns 7 and 8 show the lambda estimates for the four factor model of Carhart (1997). The
size and momentum factors are positive and significant. The economic significance of the momentum
factor is particularly big. Agasp is insignificant and has a negative sign. While this result seems to
be puzzling at first, Ang et al. (2010) points out that when the estimation uses individual stocks,
the HML premium is negative. They argue that the book-to-market effect is a characteristic effect
rather than a reward for bearing HML factor loading risk. If the book-to-market ratio is included
instead of the HML factor, the coefficient on B/M is strongly positive (Ang et al.; 2010). They also
argue that when portfolios sorted on B/M are used as base assets in the FM procedure, the HML
factor loadings are induced to have a positive coefficient through forcing the portfolio breakpoints
to be based on book-to-market characteristics. This is what we also see in the results of Section
4.3.2.

The last two columns present specifications where both our five factors and the Carhart (1997)
factors are included in the model. The important observation here is that the sign, magnitude,
and significance of the lambda estimates do not change considerably compared to the models in
columns 5 and 6. This suggests that our factors capture different channels than the factors of
Carhart (1997).

To conclude this subsection, the results of Fama-MacBeth regressions analyzing the contempo-
raneous relationship between returns and factor loadings suggest that all the factors of the GDA5S
model are priced in the cross-section of stock returns. The estimates on the prices of risk are signif-
icant both statistically and economically. Moreover, their signs and magnitudes closely correspond

to the theoretical predictions.
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Realized betas and future returns

While we consider the results of the previous section as our main ones, we would also like to present
some results about the relationship between realized betas and future returns. Lewellen (2011) is
a recent example to analyze predictive FM regressions. We carry out the same exercise as in the
previous section, but now the independent variables (the betas) and the dependent variable (the
average monthly excess return of the stock) are calculated on different periods. At every month ¢,
we estimate the conditional betas using data from the previous one-year period (months t—11, ..., ¢).
These betas are then related to returns following month ¢. We consider three different horizons:
next month’s return (¢ + 1), average return over the next three months (t+1,...,¢+ 3), and average
return over the next six months (¢t + 1, ...,t + 6).

The results can be seen in Table 6. Our first observation is that the signs of all the lambda
estimates remain the same as the ones we got when analyzing the contemporaneous relationship.
Also, with one exception, the estimates remain significant at least at the 5% level. The only
exception is Ap. It is not statistically significant at the one month and the three months horizon,
and only significant at the 10% level when considering 6 months horizon.

All in all, we can conclude that the changes are not dramatic when we consider future returns

instead of contemporaneous returns in the Fama-MacBeth regressions.

4.3.2 Portfolios as base assets

Although Ang et al. (2010) argue that it is more efficient to use individual stocks in cross-sectional
asset pricing tests than portfolios, most of the literature uses portfolios as base assets. Therefore, we
also analyze the empirical performance of our model using portfolios as base assets (with otherwise
unchanged methodology). Data on the returns of our test portfolios is obtained from Kenneth R.
French’s data library!!.

We use the value-weighted return series of four different sets of portfolios: (i) 25 (5x5) portfolios
formed on size and book-to-market, (ii) 25 (5x5) portfolios formed on size and momentum, (iii)

30 portfolios consisting of 10 size, 10 book-to-market, and 10 momentum portfolios, and (iv) 30

"http: / /mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html
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industry portfolios. Results of the FM regressions are presented in Table 7, while Figure 1 and
Figure 2 show scatter plots of actual versus predicted returns for the different models and sets of
portfolios.

The first observation is that the signs on the lambda estimates in our model (both for GDA3
and GDAJH) remain the same as the ones when analyzing the contemporaneous relationship using
individual stocks (the only exception is Ap for the 25 Size-Momentum portfolios). Our second
comment is about the statistical significance of the estimates: three factors, Ay, Awp and Axp
are statistically significant more or less consistently across all sets of portfolios. The other two
factors (Ap and Ax) are generally not statistically significant. The magnitudes of the estimates are
comparable to those in Table 5. The overall conclusion is that two factors loose their statistical
significance if portfolios are considered in the Fama-MacBeth procedure instead of individual stocks.
Other than that, the results seem to be quite robust to the choice of base assets.

The sum of squared pricing errors (labelled with ”SSE” ) in Table 7 and Figures 1 - 2 describe the
fit of the models. We can conclude that the GDA3 model is a considerable improvement compared
to the standard CAPM, while the GDA5 model provides further considerable improvement. While
the best fit (lowest SSE) is provided by the Carhart (1997) model for all the four sets of portfolios,

the fit of the GDA5 model is comparable to that.

Decomposing returns

Using portfolios as base assets also allows us to decompose realized returns of these portfolios into
parts that can be attributed to different factors. We carry out the following exercise: for each
month ¢ we have the B f;,t estimates from the first stage of the Fama-MacBeth procedure, and the
/A\fj,t estimates from the second stage of the FM procedure. The product Bf]-,t . ij,t is the part
of the return at time ¢ that can be attributed to factor f;. We average these products across the
whole sample period to arrive at the decomposition of the average returns of the portfolios.
Figure 3 shows the results of this exercise when the set of base assets consists of 10 portfolios

sorted on size (S1 to S10), 10 portfolios sorted on book-to-market (B1 to B10), and finally 10
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portfolios sorted on momentum (M1 to M10)*2. Note, that during the estimation the 30 portfolios
are considered at the same time, so the corresponding E[\f;] estimates are those presented in the
lower-left panel of Table 7.

Let us first look at the results of the standard CAPM (top row in Figure 3). We can see
that the predicted returns increase from the small portfolio (S1) to the portfolio of big firms
(S10), while for the actual returns the relationship is reversed. If we look at the book-to-market
portfolios, we can see that predicted returns are rather flat across the portfolios (B1 to B10),
while realized returns show that value stocks (B10) outperform growth stocks (B1). In the case of
the momentum portfolios, predicted returns increase from the looser portfolio (M1) to the winner
portfolio (M10). This is the same pattern that can be observed in the actual data, However, the
spread in the predicted returns is much smaller than the spread in the actual returns. These
observations represent the failure of the standard CAPM in pricing these portfolios.

Fama and French (1993) developed the size (SMB) and value (HML) asset pricing factors to
address this failure of the CAPM. Carhart (1997) added the momentum factor (WML) to the model.
Results of this model are presented in the second row of Figure 3. The model provides a much
improved fit compared to the standard CAPM. The predicted returns show the same patterns
as the actual returns: they decrease from S1 to S10, and increase from Bl to B10 and M1 to
M10. However, we would like to highlight one important observation: the improved fit of the size
portfolios comes solely from the SMB factor. The improved fit of the B/M portfolios comes mostly
from the HML factor. Finally, the improved fit of the momentum portfolios is almost exclusively
due to the WML factor. These observations show how each factor was tailor made to explain its
respective anomaly.

Let us look at the results of our GDA5 model in the bottom row of Figure 3. This model also
provides a much better fit than the standard CAPM, and it is very similar to the Carhart (1997)
model. The improvement for all three sets of portfolios is mainly coming from the contribution of
two sources: the premium associated with the put option on the market return and the premium

associated with the call option on the changes in market volatility. As it has been pointed out earlier,

12The same exercise can be carried out for the other sets of portfolios. The conclusions from analysing
those sets of portfolios are similar to those presented here. The results are available upon request.
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these premiums are required if and only if the investor is both risk averse and disappointment averse.
The important observation that we would like highlight is that the same factors provide large part

of the improvement across all portfolios.

4.3.3 Further robustness checks
Changing the definition of the disappointing event

So far in the empirical analysis, we have considered only one definition for the disappointing event:
the market return falling below zero (rw; < 0). In this section we examine what happens if
this definition is changed. Results are reported in Table 8. Recall, that the disappointing event
corresponds to ry; < In(k/d) in the case of the GDA3 model, and to ry; + (1/1) QOVUAO'I%V’t <
In (k/6*) for the GDAS5 model. In order to analyze different scenarios, we redefine the disappointing

region the following way:

o
rwi—a—% Aoty <.
O-AU‘Q/V ’

Our baseline specification (the one that we have studied so far) corresponds to a = b = 0 (column
1 in Table 8). The disappointing region in the GDA3 model assumes a = 0. Column 2 in Table 8
presents the case when a = 0 and b = —0.005 3. In an average one-year period, the disappointing
event occurs on 21% of the trading days with these parameter values, as opposed to 46% in our
baseline case. Comparing the lambda estimates in the first two columns, we can see very little

change. The rest of Table 8 presents scenarios when a is different from zero. We use the scaling

Or . . .
factor V‘; , so that ry; and Aa%Vt become comparable in magnitude 4. The overall conclusion

Ao

from Table 8 is that our baseline results are remarkably robust to changes in the definition of the

disappointing event.

'3 This implies that § = 0.995 from 7y, < In (k/4).

14The value of the O_UTV‘; ratio is around 800 in an average one-year period. We would also like to note
‘W

that the typical value of (1/v) ¢y, in our calibrated model (see Table 1) is around -2600. This roughly
corresponds to the case when a = 3.
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Different measures of market volatility

In this section we explore how the results change if different measures of market volatility are
considered. In our baseline specification (the results presented so far) daily market variance is
estimated by fitting an EGARCH model to the daily market return series. Alternative approaches
include using the VIX index, calculating daily realized variance from intra-daily market returns,
or fitting a different model with conditional heteroskedasticity. Results using these approaches are
presented in Table 9. For detailed description of the estimation of market variance in the different
cases, we refer the reader to Appendix B.

Panel A of Table 9 presents the results using the whole sample period. Since the VIX and
the intra-daily market return data is available after 1986, only the results for the model based
approaches are presented. The results are very robust, there are only minor changes across the dif-
ferent GARCH specifications. The models that take into account the leverage effect (the EGARCH
and the GJR-GARCH) perform slightly better than the standard GARCH. Panel B presents the
results for the subsample between 1986 and 2010 when data is available for all the volatility mea-
surement approaches. The adjusted R?-s, the signs and statistical significance of the estimates are
very similar across the specifications. The only difference is that the magnitudes of Ax and Axp
are higher when the VIX and the realized variance is used. The overall conclusion is that while we
get the best results (in terms of adjusted R?) when the EGARCH model is used, these results do

not change much if a different approach is considered for measuring market volatility.

5 Revisiting measures of downside risk

In this section, we argue and show that exposures of asset payoffs to the three option factors provide
a rational interpretation of downside risks. To achieve this, we show how our multivariate betas
from equation (29) are related to a number of different measures put forward in previous empirical
research to capture the market downside risk of an asset. We refer the reader to Appendix A.2 and
A.3 for complete derivations of these relations.

One of the most popular measures of the market downside risk is the downside beta examined
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by Ang, Chen and Xing (2006) and defined as follows!:

Cov (Rf,t’ rwit | Dt)

DM _
g = Varrwe | Dy (37)

We show that

Cov (AUIQ/V,t’ Wit | Dt)

DM _ o , DM (4 A DM _
B = Biw + Biwp + B (Bix + Bixp) where ™ = Varfrwa | D : (38)

The above formula reduces to @D M — Biw + Biwp for the GDA3 model. For the GDA5 model,
we find empirically that the term B)[()M (Bix + Pixp) is negligible so that 5,'[) M ~ Biw + Biwp. We
report in Table 10 a sample cross-sectional correlation of 0.993 between BZ-D M- and Biw + Biwp for
the GDA5 model.

Similar to the market downside beta, we can introduce a volatility downside beta which we

define by
Cov (R¢,, Acdy, | Dy
BPY = (RS ). (39)
Var [Aa%/’t ] Dt]
We show that
Cov TW,t>A012/Vt | Dy
/BiDV = Bix + Bixp + 51/?/‘/ (Biw + Biwp) where 51/?/‘/ = ( ) (40)

Var [AUIQ/V,t | Dt}

We find empirically that the term S5V (Biw + Biwp) is negligible so that 8PV ~ B;x + Bixp. Our
results from the previous section show that these two major components of the volatility downside
beta are priced and predict future returns.

Post et al. (2010) advocate to use the semi-variance (SV) beta to measure the market downside
risk. They study how realized market downside risk measures are related to future returns, and
argue that the SV beta captures downside market risk better than the downside beta. The SV

beta, that emerged from the lower partial moment framework of Bawa and Lindenberg (1977), is

15Empirically, Ang, Chen and Xing (2006) define the disappointing event as rwy < pw, i.e. the market
return falls below its long-run mean. Although we keep our definition of the disappointing event as closed
as possible to the theory, the difference is empirically irrelevant.
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defined by!'6

BV = : (41)

We show that

BV = aw Biw + awpBiwp + apBip + axBix + axpBixp + arE [R,] (42)

where the a’s coefficients are defined by

aw =1—arE[rwy], awp=1-—marErw:| Dy, ap=(1—m)ar (43)
ax = }S'(V — CLRE [AUI%V,t] s axp = ﬁ}g(v — 7T1(IRE [AO"Q/VJ | 'Dt]
and where
2
B D E [Aaw’trwvt | Dt]
aR = M, m = Prob(D;) and B3 = . (44)
E i}, D] E (13,1 D]

Equation (42) reduces to BZ-SV = aw Biw + awpBiwp + apBip + arE [Rf’t} for the GDA3 model.
Acharya et al. (2010) and Brownlees and Engle (2011) has used the Marginal Expected Shortfall
(MES) to measure the systemic risk of financial institutions during the recent crisis. They show
that the MES, together with the leverage of the institution, is able to predict emerging risks during
the financial crisis.!” We believe that it would be useful to show that the MES can be expressed in
terms of exposures to the theoretical factors that are priced at the market place. The MES of an

asset may be defined as

MES; = E [-R{; | D] . (45)

16Post et al. (2010) define the disappointing event similarly as ry; < 0, i.e. the market return is negative.
As already mentioned, empirical results are robust to this alternative definition of the downside event.

17Since these authors focus on systemic risk, that is a worse downside risk, they empirically consider a
disappointing event that is more infrequent compared to other papers on downside risks (5% worst days for
the market return).
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We show that

MES; = aw Biw + awpBiwp + apfip + axfBix + axpBixp + E [-R,] , (46)
where the a’s coefficients are defined by

aw == (Efrwe | Do) = Elrwy]),  awp=—(1—m)E[rwe [ Dy, ap=—(1-m)
(47)

ax = — (E [Ag%w ] Dt} —F [AJ%W]) , axp=—(1-m)E [AUI%V,t | Dt] :

Equation (46) reduces to MES; = aw Biw + awpBiwp + apfip + E [—Rit] for the GDA3 model.

Note, that the a’s coefficients in equation (43) and (47) do not vary in the cross-section, so the
variation of ﬁisv and M ES; across stocks is a result of the variation in the betas and the expected
return of the asset. However, the relative magnitude of the weights may vary through time. Also
observe that, since the SV beta and the MES not only contains our multivariate betas but also the
mean excess return of the stock, they should not be applied in portfolio sorts when analyzing the
contemporaneous relationship between downside risk measures and expected returns. Also, when
the relationship between these two measures and future returns is analyzed (as in Post et al.; 2010
for the SV beta), the momentum effect is incorporated in the measure through the E [R;t} term.

For empirical studies on downside risks and expected returns, we advocate using the relative
SV beta and the relative MES which we define by

E |R¢,rw, | D
BRSV = { e t]—E [W‘*’Dt]E[ ¢,] and RMES; = E[-R{, | D}]-E [-R¢,] . (48)

E [r%w | Dt} E {rgw | Dt]

The RMES of an asset is just equivalent to the opposite of its relative downside potential as
previously defined in Section 4. The sample cross-sectional correlation between the original SV beta
and the relative SV beta is 0.959, and the sample cross-sectional correlation between the marginal
expected shortfall and the opposite of the relative downside potential is equal to 0.897 as reported
in Table 10. The term ax 8;x + axpB;xp is empirically irrelevant for the relative SV beta and the

relative MES. Table 10 shows that the correlation between BZRSV and aw B;w + awpBiwp + apBip
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is 0.995, while the correlation between the relative MSE and aw B;w + awpBiwp + apBip is 0.998
for the GDA5 model.

Finally, we observe from the a’s coefficients expressed in equations (43) and (47) that ayw,
awp and ap are positive while ax and axp are negative. This shows that, both the relative SV
beta and the relative MES increase with the betas on the market return, the put option and the
cash-or-nothing option, and decrease with the betas on changes in market volatility and the call
option. An empirical investigation of how the a’s coefficients vary through time and how they
weight the different components of downside risks is left out for further research. While exposure
to the cash-or-nothing option influences the relative SV beta and the relative MES, it plays no role

in determining the market downside beta and the volatility downside beta.

6 Conclusion and Future Work

This paper provides an empirical analysis of downside risks in asset prices. The approach is consis-
tent with general equilibrium implications for asset returns in the cross-section when investors have
totally rational and axiomatized asymmetric preferences. The theoretical setup explicitly disentan-
gles the components of an asset premium that are due to the different characteristics of investors’
behavior, and shows that asymmetric preferences lead to option pricing in the cross-section of stock
returns. These options provide a straightforward way for investors to act on their views of two of
the most closely followed market variables, the market return and changes in market volatility.
Empirical results show that the cross-section of stock returns reflects a premium for bearing unde-
sirable exposures to these options, and that the new cross-sectional model significantly improves
over nested specifications without the option factors.

The paper also derives explicit cross-sectional relations between existing downside risk measures
and betas on the market return, changes in market volatility and option factors. The weights
associated to these relations and how they vary through time and in relation with the business

cycle may constitute an interesting avenue for future research.
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Apppendix

A Relationships between different measures

A.1 Relating o;p to E [R}, | Dy
o;p can be expressed as
oip = Cov [R{,,I(Dy)] = E [R{ I (Dy)] — E [R{,| E[I (D))
= E [R{|Dy] P(Dy) — E [R{,] P (Dy) (A1)
=P (Dy) (E [R;,|Di| — E [R§,]) .

Note, that P (D;) does not vary in the cross-section, so sorting on o;p is equivalent to sorting on F [Rf,t |Dt] —
E[R;,].

A.2 The GDA3 model

Let us start with the GDA3 model. The beta measures are calculated using daily data from ¢t = 1,...,T with
the following OLS regression.

Rf, = a; + Biw - rwi + Biwp - rwiel (Dt) + Bip - 1(Dy) + € (A.2)
The mechanics of the OLS give us the following four equations

0=F [Eit]
E[R;,] = i + BipP (Dy) + Biw E [rw,e] + BiwpE [rwy | Di] P (Dy) (A.3)

0=F [’I“Wﬂg . €it]
0=F [rws (R, — ai — Biw - rwi — Biwp - rwel (De) — Bip - 1(Dy))]
E [R¢;rwi] = aiE [rwa] + BipE [rw,e | D] P (Dy) + Biw E [riy,] + BiwpE [riy, | D] P(Dy) (A4)

0= E[rw.I(Dy) - €i4]
0=FE [rwl(Dy) (RS, — o — Biw - wie — Biwp - rwal (Dy) — Bip - 1(Dy)) ]
E RS ;rwl(Dy)] = (o + Bip) E [rwal (Dy)] + (Biw + Biwp) E [riy (D))
E[Rf yrwy | Di] = (@i + Bip) E [rw,e | Del + (Biw + Biwp) E [riy, | Di] (A.5)

~  —

0=E[I(Dy) - €]
0= E[I(Dy) (R§, — o — Biw - rwie — Biwp - rwal (Dy) — Bip - 1(Dy))]
E [R{ 1(Dy)] = (a; + Bip) E [I(Dy)] + (Biw + Biwp) E [rw,id (Dy)]
E[R;, | D] = (o + Bip) + (Biw + Biwp) E [rw,e | Dy (A.6)
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The downside beta used in Ang, Chen and Xing (2006) is defined as

DM _ Cov [Rf)t,rw,t | Dt]

, A7
ﬂl Var [rW,t ‘ Dt] ( )
Using (A.5) and (A.6), this can be rewritten as
gpM _ E [Rfyrwe | D] — B[RS, | Di] Elrw, | D
! Var [rw,s | Dy
_ (Biw + Biwp) - (E [rfy | De] — E? [rw, | D)) (A.8)
Var [rw,. | Dy
= Biw + Biwp
The semi-variance beta used by Post et al. (2010) is defined as
E RS ,r D
gov = EFirwe | D) (A.9)
E |1 | D]
Using (A.5), this can be rewritten as
E|r D,
g = ZUWl P o 4 )+ (B + Baw) (A.10)
E |1 | /]
Substituting for «; using (A.3) will result in
E|r D E|r D
sV = p[re) el P g0 ppy) Elwe P,
E |1, | /] E |1, | /]
(A.11)
Elr D E*|r D
+Bw | 1= Elrw] M +Biwp | 1 P (D) [ZW*t D
E [rw,t | Dt} E [rw | Dt}
The marginal expected shortfall from Brownlees and Engle (2011) is simply the negative of (A.6),
MES; = —E [R{, | D¢] = — (i + Bip) — E [rws | Di] - (Biw + Biw) (A.12)

Substituting for «; using (A.3), will result in

MES; = (P (Dy) — 1) Bip + (E[rw,l] = E [rwye | Di]) Biw + E [rwye | D) (P (Dy) — 1) Biwp — E [R§,]
(A.13)

A.3 The GDAS5 model

Let us look at the GDA5 model. The betas are calculated from the following OLS regression

RS, = o+ Biw - rwit + Biwp - rwal (Dy) + Bip - 1(Dy) + Bix - Aoy, + Bixp - Aoy I(Dy) +2;  (A.14)
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Similarly to the previous section, the mechanics of the OLS give us the following results:

E [Rf,t] = a; + ipP (Dy) + Biw E [rw,e] + BiwpE [rw, | De] P (Dy) +
+ Bix E [Aciy,] + BixpE [Aofy, | Di] P (Dy) (A.15)

E[R{;rwi] = & E [rwa] + B E [rwy | D) P (Dy) + Biw E [TIQ/V,t] + BiwpE [T?/V’t | Di] P (D) +
+61XE [TW,tAO—%/Kt] + ﬂzXDE [TW,tAUx%[/,t ‘ Dt} P(Dt) (A16)

E [R{,rw, | Dt| = (o + Bip) E [rwye | D] + (Biw + Biwp) E [7“‘24/,15 | D] +
(Bix + Bixp) E [rw. Aciy, | Dy (A.17)

E[R, | Di] = (o + Bip) + (Biw + Biwp) E [rwe | De] + (Bix + Bixp) E [Acjy, | Dy (A.18)

E [R{,Acjy,] = o E [Acyy,| + BipE [Acty, | D] P(De) + Biw E [rw, Aoty +
+ BiwpE [rw,Acjy, | D] P (Dy) + Bix E [(AU%VJ)Z] +

+ BixoE [(Ack,)” | D P(Dy) (A.19)

E [R{ Acjy, | D] = (a; + Bip) E [Aciy, | Di] + (Biw + Biwp) E [rwaloiy, | Di] +
+ (Bix + Bixp) E [(Adgv,t)Q | Dt} (A.20)

The downside beta used in Ang, Chen and Xing (2006) is defined as in (A.7). Using (A.17) and (A.18), it

can be rewritten as

E[R¢,rw, | D] — E[RE, | D] E[rwy | D1
Var [rw, | Dy
(Biw + Biwp) - (E [y, | Di] — E* [rw | Di])
Var [rw,s | Dy +
(Bix + Bixp) - (E [rweAofy, | Dy)| — E [Acjy, | D] Erwy | Dy])
Var [rw,. | Dy
Cov [’I”W,tAO'%VJ | Dt}
Var [rw,: | Di]

pPM —
2

(A.21)

+

= (Biw + Biwp) + (Bix + Bixp)

The semi-variance beta used by Post et al. (2010) is defined as in (A.9). Using (A.17), this can be

rewritten as
E [TW,tAO'IQ/V’t | Dt]
E |1}, | D]

gsY = Elrwe | Di (i + Bip) + (Biw + Biwp) +
FE [TIQ/V,t | ,Dt}

- (Bix + Bixp) (A.22)
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The marginal expected shortfall from Brownlees and Engle (2011) is simply the negative of (A.18),

MES; = — (i + Bip) — E [rwy | D] - (Biw + Biwp) — E [Acjy, | Di] - (Bix + Bixp) (A.23)
Substituting for «; using (A.15), will result in

MES; = (P (Dy) — 1) Bip + (E [rw,i) — E[rwy | D)) Biw + E [rw,e | Di) (P (D) — 1) Biwp

+ (E [Acd,] — E[Ack, | Di]) Bix + E [Ack, | D] (P(Dy) — 1) Bixp — E [RS,] (424
The volatility downside beta can be defined similarly to the market downside beta:
v _ Cov R, Aojy, | Dy (A.25)
Var [Ack,, | D]
Using (A.18) and (A.20), this can be rewritten as
gov _ [Ri Aoy, | Di] — E[Rf, | D] E [Adyy, | D]
' Var [Ack,, | Di|
_ (Bix + fixp) (B [(a0k.)* D] - B [Act, | D1]) .
Var [Act, | D] A26)

N (Biw + Biwp) - (B [rwilogy, | Dy)] — E [Acyy, | Di] E [rw,: | Di])
Var {Aa%vyt \ Dt}
Cov [rw, Aoty | Dy
Var [Aa%,’t | Dt}

= (Bix + Bixp) + (Bsw + Biwp)
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B Different measures of market volatility

B.1 VIX

The daily value of the VIX index is obtained from CBOE through the WRDS service. The variance of the
market is calculated as (%)2. Since the VIX measures 30-day expected volatility of the S&P 500 Index,

we divide this value by 30 to get the daily variance of the market. So, the change in the daily market variance

is calculated as ) )
Ag2VIX _ (VIX;/100)" — (VIX;_1/100)

W 30

(B.1)

B.2 Realized Volatility

To calculate daily realized volatility, we use intra-daily return series of the S&P 500. The data comes from

Olsen Financial Technologies and covers the period between February 1986 and September 2010. Daily

2,RV
o’ = Zrit , (B.2)
J

realized market variance is calculated as

where r;; denotes the 10-minute log return series on the trading day ¢. Following Bandi et al. (2006) we

correct the variance estimates for the lack of overnight returns by multiplying them with a constant factor
1T L2

¢ = %, where ry; denotes daily log returns on the market. The change in the daily market
T t=1“W,t

variance is calculated as
2,RV _ 2,RV 2,RV
AJW,t =< (Uw,t - O—W,tfl) (B.3)

B.3 GARCH type of models

In this approach, we fit a model with conditional heteroskedasticity to the daily log market return series 7y ¢
(the value-weighted average return on all NYSE, AMEX, and NASDAQ stocks from CRSP). We consider
three different models: the standard GARCH(1,1), the EGARCH(1,1,1) by Nelson (1991) and the GJR-
GARCH(1,1,1) by Glosten et al. (1993). The models are given as (the difference is in the variance equation):

rwi=p+e€e , with e =owye,, and e NN (0,1)
GARCH : o}y, =w+ ael_, + Body,_,

€t—1

EGARCH : In(ojy,) =w+o (

B.4
_ 2).,_7 €i-1 —&-ﬁln(o%[/’t,l) (B4

OW,t—1 ™ Ow,t—1

GJR — GARCH : U?Mt =wtaer | +yet T(e-1 <0)+ 6012,[/7,5_1
The change in the daily market variance is calculated as

2,model __ ~2,model ~2,model
A‘7W,t = Ow, “Owt—1 (B.5)
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Table 1:

Model-Implied Values: Five-Factor Cross-Section Risk-Return Tradeoff

Model Calibration Scenarios

5 0.9979 0.9979 0.9979 0.9979 0.9969 0.9969 0.9969 0.9969 0.9969
~ 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75
P 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
o 0.3 0.3 0.2 0.4 0.3 0.3 0.3 0.1 0.1
K 0.992 0.997 0.993 0.995 0.999 0.998 0.997 0.991 0.99
bo 0.995 0.99 0.99 0.995 0.99 0.99 0.99 0.99 0.99
A. Risk-Free Rate

E [ry] 1.31 0.75 0.74 1.41 1.81 1.87 1.97 1.24 1.32
o [ry] 2.46 1.98 3.22 1.69 1.74 1.85 1.98 4.70 4.78
B. Welfare Valuation Ratio

Yvo 1.945 1.238 1.078 1.646 1.232 1.126 1.023 1.432 0.600
Vo -6.037E+3  -4.152E+3  -3.339E+3  -4.947E+3  -4.051E+3  -3.385E+3  -2.740E+3  -4.630E+3  -1.307E+3
PYRO 1.946 1.237 1.077 1.646 1.231 1.125 1.022 1.431 0.598
PRo -6.043E+3  -4.153E+3  -3.338E+3  -4.953E+3  -4.054E+3  -3.388E+3  -2.743E+3  -4.628E+3  -1.307E+3
© 1.00110 1.00016 0.99988 1.00130 1.00076 1.00100 1.00123 0.99950 0.99981
5* 0.99737 0.99842 0.99858 0.99745 0.99736 0.99729 0.99727 0.99820 0.99785
C. Disappointment Probability

71 (L) 0.0122 0.0682 0.0088 0.0597 0.1246 0.0975 0.0745 0.0025 0.0024
71 (H) 0.2105 0.2888 0.1951 0.2822 0.3172 0.3026 0.2881 0.1252 0.1183
E [mq] 0.0541 0.1148 0.0482 0.1067 0.1653 0.1408 0.1197 0.0285 0.0269
D. Factor Risk Premia

Aw (L) 0.0073 0.0072 0.0044 0.0057 0.0072 0.0055 0.0042 0.0052 0.0027
Aw (H) 0.0077 0.0083 0.0104 0.0063 0.0083 0.0083 0.0083 0.0140 0.0139
E [Mw] 0.0074 0.0075 0.0057 0.0058 0.0075 0.0061 0.0051 0.0071 0.0050
Ax (L) -1.19E-5 -1.37E-5 -9.85E-6 -8.07E-6 -1.25E-5 -9.13E-6 -6.67E-6 -1.42E-5 -7.59E-6
Ax (H) -1.09E-6 -2.08E-6 -1.87E-6 -1.10E-6 -2.09E-6 -2.01E-6 -1.90E-6 -1.79E-6 -1.44E-6
E[\x] -9.58E-6 -1.12E-5 -8.16E-6 -6.60E-6 -1.03E-5 -7.63E-6 -5.66E-6 -1.16E-5 -6.29E-6
Ap (L) -0.0744 -0.1779 -0.0666 -0.1160 -0.2421 -0.2022 -0.1637 -0.0676 -0.0373
Ap (H) -0.2781 -0.3045 -0.3741 -0.2301 -0.3079 -0.3070 -0.3055 -0.4866 -0.4794
E [\p] -0.1175 -0.2046 -0.1316 -0.1401 -0.2560 -0.2243 -0.1937 -0.1561 -0.1307
Awop (L) 0.0067 0.0064 0.0040 0.0051 0.0060 0.0046 0.0035 0.0047 0.0025
Awop (H) 0.0036 0.0030 0.0041 0.0027 0.0028 0.0029 0.0031 0.0052 0.0053
E Mwopl 0.0061 0.0057 0.0041 0.0046 0.0053 0.0042 0.0034 0.0048 0.0031
Axp (L) -1.19E-5 -1.37E-5 -9.85E-6 -8.06E-6 -1.25E-5 -9.12E-6 -6.66E-6 -1.42E-5 -7.59E-6
Axp (H) 8.48E-8 1.46E-8 -1.24E-8 8.50E-8 7.04E-8 9.10E-8 1.09E-7 -6.21E-8 -2.30E-8
E[XAxp] -9.33E-6 -1.08E-5 -7.77TE-6 -6.34E-6 -9.83E-6 -7.17E-6 -5.23E-6 -1.12E-5 -5.99E-6

The table shows the model-implied expected annualized risk-free rate and its volatility in Panel A, the drift and loading coef-
ficients of the welfare valuation ratio onto market volatility in Panel B, the disappointment probability and its unconditional
value in Panel C, and finally the factor risk premia and their expected values in Panel D.
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Table 2: Estimating the EGARCH model

The model we estimate - EGARCH(1,1,1)

rwit =W+ €
€t =0W,t€t
€11 2 €11 2
In(02,,) =w + « —\/7 + + Bln (o7 ,_
et =t [ 2] )

er "IN (0,1)

Estimates
7 w o Y p

Coeff ~4.13E-4 -0.141  0.150 _ -0.074 _ 0.985
se.  (0.0001) (0.0098) (0.0050) (0.0031) (0.0010)

Table 3: Correlations between measures of risk

ow  oip  owp 0oix oixp Bw  Bip Biwp Bix Bixp
W 1.00

0D -0.91 1.00

owp | 0.94 -0.86 1.00

OiX -0.01 0.02 -0.01 1.00

o;xp | -0.03 0.01 -0.04 0.68 1.00

Biw | 0.73 -0.51 0.52 -0.01 -0.01 1.00

Bip 0.04 036 0.03 0.00 -0.02 0.42 1.00

Giwp | -0.06 0.04 026 0.04 000 -0.58 -0.02 1.00

Bix 0.10 -0.08 0.10 0.72 0.06 0.07 0.01 0.01 1.00

Bixp | -0.00 -0.01 -0.00 -0.01 0.68 -0.02 0.01 0.05 -0.65 1.00
The above table shows the correlation matrix of several measures of risk connected to our
analysis. At every month ¢, we calculate the cross-sectional correlation of the measures
estimated using daily data from the previous one-year period. The values presented in

these tables are the time-series averages of these cross-sectional correlations over the sample
period. The sample period is July, 1963 - December, 2010.
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Table 4: Average returns of portfolios sorted on different measures of risk

Panel A: equal-weighted portfolios

Low
2
3
4
High

H-L
t-stat

measures calculated separately
oiw 0iD OiwD  OiX 0iXD
5.10 17.44 428 1529 15.79
7.60 11.21 7.33 11.75 12.34
9.47 9.65 9.00 9.64 10.02
11.33 7.62 11.23 7.84 7.79
17.99 5.51 19.81  6.76 5.42

12.89 -11.93 15.54 -8.53 -10.37
3.70 -3.61 4.16 -490 -7.35

measures from GDA5 model
Biw  Bip  Biwp  Bix  PBixp
9.28 11.39 5.70 12.59 12.96
8.73 9.80 7.84 10.89 11.15
9.57 9.08 9.61 9.38 9.67
10.73  9.60 11.77 8.62 9.12
12.81 11.25 16.44 9.65 8.25

3.53 -0.14 10.73 -2.94 -4.70
1.70 -0.16 6.20 -2.02 -6.25

Panel B:

value-weighted portfolios

Low
2
3
4
High

H-L
t-stat

measures calculated separately
oW 0iD OiWwD  OiX 0iXD
6.22 12.36 6.12 15.48 16.76
6.60 8.10 6.31 12.29 13.22
7.34 7.38 7.12 9.48 10.30
8.06 6.47 8.82 7.35 7.53
12.73 6.23 14.78  5.96 4.48

6.50 -6.13 8.66 -9.52 -12.28
1.88 -1.78 230 -5.16 -6.34

measures from GDA5 model
Biw B  Biwp  Bix  Bixp
8.02 10.57 5.18 12.10 13.22
7.81 9.07 8.37 9.50 10.98
8.13 8.33 9.54 8.30 8.50
8.38 8.25 11.83 8.25 7.34
9.90 8.92 15.93 8.95 5.68

1.88 -1.65 10.75 -3.15 -7.54
0.72 -1.07 3.79 -2.10 -5.71

The table lists the equal-weighted (Panel A) and value-weighted (Panel B) average returns of stocks
sorted by realized covariances and betas. For each month, o-s and (-s are calculated using daily simple
excess returns over the previous 12 months (including the given month). For each month and each risk
measure, we rank stocks into 5 portfolios, and the average monthly excess returns (over the previous
12 months) of these portfolios are calculated. The table reports the annualized average return of these
portfolios over the whole sample period. The row labelled "H-L” reports the difference between the
returns of portfolio 5 and portfolio 1. The row labelled ”t-stat” is the t-statistics computed using
Newey-West (1987) standard errors with 12 lags for the H-L difference.
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Table 7: Fama-Macbeth regressions on portfolios

25 Size - BM 25 Size - Momentum
Aw 0.0064***  0.0043***  0.0052***  0.0047*** | 0.0068*** 0.0051*** 0.0052***  0.0047***
(0.0019) (0.0016) (0.0017) (0.0016) (0.0019) (0.0017) (0.0017) (0.0017)
AD -0.3969 -0.2477 0.4210 0.2153
(0.3625) (0.3156) (0.2892) (0.2744)
AWD 0.0112***  0.0067** 0.0158***  0.0103***
(0.0032) (0.0029) (0.0033) (0.0029)
Ax -1.6E-5 -3.3E-5*
(1.1E-5) (1.8E-5)
A\xp 1.4E-5* _3.6E-5***
(8.2E-6) (1.2E-5)
AsMB 0.0021 0.0025*
(0.0013) (0.0013)
AHML 0.0037*** 0.0031
(0.0012) (0.0019)
AWML 0.0129*** 0.0064***
(0.0022) (0.0017)
SSE 0.0017 0.0005 0.0009 0.0007 0.0023 0.0007 0.0013 0.0009
10 Size, 10 BM, 10 Momentum 30 industry
A 0.0052***  0.0046***  0.0047***  0.0046*** | 0.0054***  0.0053***  0.0053***  0.0050***
(0.0017) (0.0016) (0.0017) (0.0016) (0.0017) (0.0016) (0.0017) (0.0016)
A1(p) -0.2632 -0.2542 -0.4592** -0.3828
(0.2451) (0.2128) (0.2292) (0.2361)
Arw (D) 0.0096***  0.0061** 0.0081***  0.0061***
(0.0032) (0.0027) (0.0019) (0.0019)
AAo2 -1.3E-5 -9.1E-6
(1.3E-5) (6.5E-6)
)\Aggvl(p) -1.9E-5*** -7.8E-6
(7.2E-6) (6.4E-6)
ASMB 0.0012 0.0007
(0.0013) (0.0013)
AHML 0.0020* 0.0002
(0.0011) (0.0010)
AWML 0.0050*** 0.0189***
(0.0015) (0.0014)
SSE 0.0015 0.0005 0.0009 0.0007 0.0041 0.0021 0.0033 0.0027

The Table presents results of Fama-MacBeth regressions. The base assets are portfolios. For each month
t the realized (-s are calculated using daily data over the previous 12 months (months ¢ — 11 to ¢). The
dependent variable in the cross-sectional regression for each month ¢ is the average monthly excess return
over the same period (previous 12 months - t — 11 to t). The standard errors (in parenthesis) are corrected
for 12 Newey-West (1987) lags. The row labelled ”SSE” presents the average sum of squared pricing errors

for the given model.
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Table 10: Correlations between measures of market downside risk

- 151832 gPM@E) gsv ghRsv gRSV) nvps, RMES; RMES®  pPv gPv®
pPME) 0.993  1.000

BV 0.821  0.820  1.000

BRSV 0.861  0.858  0.959 1.000

BRSV 0.857  0.864 0956 0.995  1.000

MES; 0429 0433 0858 0.761  0.760  1.000

RMES; | 0497 0499 0832 0.860 0856  0.897  1.000

RMES® | 0498 0502 0832 0859 0.860 0896  0.998 1.000

Bpv -0.046  0.028 0.010 -0.009 0.044  0.057  0.028 0.043  1.000
gPve 0.069  0.141  0.105 0.090 0142  0.105  0.084 0.099  0.981  1.000

The above table shows the correlation matrix of several measures of downside market risk. At every month
t, we calculate the cross-sectional correlation of the measures estimated using daily data from the previous
one-year period. The values presented in these tables are the time-series averages of these cross-sectional
correlations over the sample period. The sample period is July, 1963 - December, 2010. The following
measures are presented in the Table:

Cov [Rfytﬂ"w,t | Dt]

pPM —
* Var [TW’t | ’Dt]
ﬁiDM(Q) = Biw + Biwp (B-s from the GDA5 model)
o IR
[ e T
E [}, | D]
rsv _Z [szrw’t | Dt] B [rw. | Dt] e
B = . -1, E[R{,]
E[3,1D] B[, D]
,BZ.RSV(Q) =awBiw + awpBiwp + apBip (B-s from the GDA5 model and the a coefficients are given in (43))

MES; = E [-R§; | Di]
RMES, = B[~RS, | D] - B[R]
RMESZ.(2> =awBiw + awpBiwp + apBip (B-s from the GDA5 model and the a coeflicients are given in (47))

_ Cov [R?

2
DV z,t’AGW,t I Dt}
PV =

Var [Ac},, | D]

ﬁiDV@) =Bix + BixD (B-s from the GDA5 model)

o4



"), 9[qR], Ul pojrodol S[oPOW WIOIJ SUINIDI
poajorpaad aderear oY) jsurede sorjojirod (s[ryumb wnjuswour y3-L pue oz1s [[1-¢ oY) 03 Spuodsertod (2 o10j110d ‘MOI W0))0q) WNIUSTOA - OZIG GX G
pue {(ormpumb /g y3-L pue oz1s 13- 8Y) 09 spuodsariod (2 orjojrrod ‘mox doy) N/ - 9ZIG GXG 1) I0] STINJDI S$90X0 9FRIoAR 91} SMOTYS 2INSY SIY T,

(% [enuue) suinjes SSeOX8 PajoIpdld (% [enuue) suinjes SS80Xd PajIPald (% [enuue) suInjal SS80Xd PaYOIPald (% [enuue) suinjes SSe0Xd PaoIPald
St ok S 0 St ol S 0 St ok S 0 St 0ol S 0

T 0 T 0
120 ISe

=
.
)

e 34
e lcocse

oge

ol vee ok

cl cl
id]

14

(% |enuue) suinjal SS90Xa pazieay
(% [ENUUE) SuIN}al SSB0X8 pazifeay
<
o
o
L]

(% |enuue) suinjal SS90X8 pazieay
<
3
o
&
Ld
(\I
L]
(% [ENUUE) SuIN}al SSB0X8 pazifeay

143
ce

Sie I8l Sie 8l Sle 81 Sle 8l

cvan (p) evan (0) (L661)1revIR) (q) INAVD (e)
sorjoj310d WNIULWON - 9ZIG G,

(% [enuue) suinjes Sseoxa PajoIpald (% [enuue) suinjas SSoXa PajIPald (% [enuue) suinjal SS80X8 PaYIPald (% [enuue) suinjas SSoXa PajIpald
cl ot 8 9 14 4 0 14 cl ol 8 9 14 4 0 14 cl ol 8 9 14 c 0 14 cl ok 8 9 14 4 0

T T T T 0 l T T T T T 0 l T T T T T 0 l T T T T T 0

Ige Ise

R

IGo

eace €58,
e
SS,

ey,
ce 18

1S
120 ce fes
mmommo

vSeve
sse

5@
Y \ve 19
sse

cce
zL8ce 8

cle
¥ 2e

B ) ok

cce Ti®

4! see 12k see 4!
Gle Sle

()
2 62® 101
sz vie

yEe® 101

Gze Vi

sce la1
Sle

ol

(% [enuue) suinjes ss8o%d pazijesy
(% [enuue) suinjos sseoX8 pazijeay
(% [enuue) suinjel sS8o%8 pazijeay
(% [enuue) suinjos sseoX8 pazijeay

cvao (p) evan (0) (L66T)1revIR) (q) INdVD (e)
sor10j310d JONIRIN-03-Y0O( - 9ZIG G,

sor[oj310d JO swIngol pajorpald snsioA [Ny 1 9INSIg

95



*), 9[qe], ut pajiodolr s[opow WO SUIM}al pajorpaid o8elose o1y jsurede sorfojpiod (mol wojoq) A1snpul g pue
{(mox doy) (N, poreqe]) wnjuewow O pue ‘(g Poreger) IN/9 0T ‘(«S. PRIPge]) 9Z1S (T oY} I0] SWINJoI $S00X0 9FRIoAR o) SMOTS oIn3Y SIY T,

(% [enuue) suin}as SSa9Xa PajoIpald (% [enuue) suin}al SSa0xa PajoIpald (% [enuue) suinjas SSa9Xa PajoIpald (% [enuue) suin}aJ SSa9Xa PajoIpald

4! oL 8 9 12 4 0 4 oL 8 9 12 4 0 4! oL 8 9 12 4 0 2L oL 8 9 4 4 0
. . . . . : 0 : ; . . . : 0 : : . . . : 0 ; ; . . . : 0
1 4 1 2
ps) s ps) s
oce 8 oce 5 oce 8 oce 5
5 N 5 N
e i, v 8 “lhe 13 v 3 Clag v 8 siect® 1ze L v 3
2 2 2 2
Fi 3 ﬁmw. 2 L FReTEE e 3 ppgEe 2
cle 19 & e 9 & 1% Yive 19 & €28 glecere 9 &
g . g Ze  Lie ol 3 Lo ol
£ LAY ) z 8 g 4 7001 € €
2ze v & 3 2ze be 3 e S e 3 cas Do ¢ B
Ze > l® > ole ce > 9le z e ™
e sze m ble 82® m (0 52® m e 82® m
s S s S
10k 2 ot 8 104 2 ok 2
ce ce ce ce
gle 1et sle al gle 1et gle cl
svao (p) evao (0) (L66T)1rerTe) (q) VD ()
sorjoyprod Arysnput ()¢
(% [enuuR) suINjal SS80X8 PajoIpald (% [enuue) suinjel SS80Xa PaloIpald (% [enuUR) SuINjol SS80X8 PajoIPald (% [enuue) suinjal SS80xa PaloIpald
14 cl ol 8 9 14 c oo 14 cl ol 8 9 14 4 oo 14 cl ol 8 9 14 4 oo 14 cl ok 8 9 14 4 oo
1 4 1 I
2 Au% N % inNe nu_uu ne %
2 2 2 2
) r § oi8ge v § 01§ 1 § if8esiie v K
o Q Q Q
e Naw o ° w ©ne ° Lneg venwe ° °
sie 8 65 3 65 8 -y 3
o8 19 2 9g 9 2 oge 19 2 Q 9 2
8 z o = ’ = =
one 389 g oNgggiile ol one e g sne 8
L i 18 3 8 3 Se 18 3 ° 1se 8 3
. o 6ge® @ 6 o ege o
) o ) o
3 3 3 3
oige 104 5 olge ot 5 e 10k 5 oige ol 5
> B > B
1ck ¢l 1ct cl
OlNe olNe INe OlNe
IpL i IpL iz
svao (p) evan () (L66T)1rerTe) (q) VD (®)

WNYUSTWO ()] ‘IO IRIN-03-3{00g QT ‘9ZIS QT

sorjoj110d Jo suInjor pajorpald SNSIOA [eNJOY 7 9INTI]

o6



Figure 3: Returns on the 10 Size, 10 Book-to-Market and 10 Momentum portfolios
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This figure shows the decomposition of the average predicted excess return of 10 Size (left column), 10 B/M (middle
column), and 10 momentum (right column) portfolios. Each part represents E[3 £ A fj} connected to factor f; from the
standard CAPM (top row), the Carhart (1997) (middle row), and the GDA5 (bottom row) models. The corresponding
E[X .fj] estimates are those presented in the lower-left panel of Table 7. The symbol A represents average predicted return
(sum of the parts), while o represents actual average excess return of the portfolios.
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