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Inter-firm inventor movements and the optimal  

structure of co-inventor networks 

 

Gergő Tóth – Balázs Lengyel 

Abstract  

 

There is a growing consensus that high impact innovation requires diverse knowledge access 

and cohesive groupwork at the same time; however, the role of social and collaboration 

networks in this phenomenon is still underexplored. In this paper we construct a weighted 

and time-decayed co-inventor network from all IT-related patents in the harmonized OECD 

PATSTAT 1977-2013 database. We look at the future impact of firm innovation and apply an 

inventor mobility framework for the 1990-2000 period to isolate the effect of inventor 

characteristics from the characteristics of the collaboration network in the firm. Our results 

imply that highest impact innovations are produced if the firm hires brokers who will work in 

cohesive networks in the firm. We find evidence that the small world property of networks 

within the firm exaggerates the effect of incoming brokers and high-impact inventors. 

 

JEL: C31, J69, O31 

 

Keywords: co-inventor network, network constraint, small world network, patent 

citations, difference-in-differences, predicted margins 
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Feltalálók cégek közötti mobilitása  

és optimális együttműködési hálózata 

 

Tóth Gergő – Lengyel Balázs  

 

Összefoglaló 

 

Egyre nagyobb az egyetértés azt illetően, hogy a jelentős innovációk születéséhez egyszerre 

szükséges a diverz tudáshoz való hozzáférés és a kohézív csoportokban való részvétel. Az 

együttműködési hálózatok szerepe a jelenségben azonban kevésbé feltárt. Tanulmányunkban 

az OECD PATSTAT adatbázisának 1977-2013 közötti IT-tevékenységekhez kapcsolódó 

szabadalmai alapján konstruálunk súlyozott és időben késleltetett feltalálói hálózatokat. Az 

1990-2010 közötti feltalálói mobilitási hálózat segítségével elkülönítjük a feltalálók egyéni és 

kollaborációs hálózati jellemzőinek befolyását a cégek jövőbeli innovációira. Vizsgálatunk 

alapján a legnagyobb hatású innovációk születéséhez olyan brókerek alkalmazására van 

szükség, akik képesek kohézív kapcsolatrendszerben dolgozni a cégen belül. Eredményeink 

rámutattak, hogy a vállalaton belüli hálózatok kisvilág-tulajdonsága felnagyítja az újonnan 

alkalmazott feltalálók hatását.   

JEL: C31, J69, O31 

 

Tárgyszavak: együttműködési hálózat, kisvilághálózat, szabadalmi hivatkozások, 

különbségek-különbsége módszere  
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1. INTRODUCTION 

Collaboration networks are crucial in understanding innovative success, in which the 

structure of the network and the position of the firm or the inventor determines the variety of 

knowledge access and therefore are considered as major underlying factors for innovation 

(Borgatti and Cross 2003, Capaldo 2007, Ibarra 1993, Inkpen and Tsang 2005, Schilling and 

Phelps 2007, Singh 2005, Sorenson et al. 2006, Sparrowe et al 2001, Uzzi 1997). The 

structural hole hypothesis is one of the most reflected propositions in this regard claiming 

that those firms or individuals –often called brokers– produce more radical innovations 

whose contacts represent non-redundant parts of the network (Burt 2004, Granovetter 1973). 

However, there is no clear evidence on the above theory because innovation can be produced 

in a cohesive network and also in a network with structural holes depending on the role of 

social capital in the process of innovation (Burt 1987). Accordingly, the related empirical 

evidence is divided in terms of the effect of network constraint. On the one hand, the 

innovation output of the firm is found to depend more on the number of connections but 

structural holes were found to have a negative effect (Ahuja 2000, de Vaan et al. 2015). On 

the other hand, Fleming et al. (2007) found a positive effect of brokering on innovation 

output of individuals. This still standing puzzle provides opportunities for new questions. 

In a more recent discussion, weak ties are confronted with strong ties stressing a 

diversity-bandwidth trade-off regarding information diffusion in networks (Aral and van 

Alstyne 2011). In this argument, cohesive networks are claimed to channel complex 

information if paired with high bandwidth of strong ties as opposed to the classic proposition 

of Granovetter (1973) where diverse and therefore valuable information can be collected 

through weak ties that link loosely connected circles in the network. Notwithstanding the 

high plausibility of the diversity-bandwidth trade-off theory, very few papers provided 

empirical evidence for the statements. Besides Aral and van Alstyne (2011), Bruggeman 

(2016) finds strong evidence supporting the diversity-bandwidth above statement by using 

patent citation networks. Further, Aral (2016) claims that new identification strategies and in 

particular experimental and quasi-experimental approaches are needed to understand the 

endogenous relation between social structure and nodal outcomes. In this paper, we take a 

quasi-experimental approach by taking the case of inter-firm mobility of inventors and by 

investigating how the network characteristics of mobile inventors and the characteristics of 

the networks in the firm influence the future impact of the innovation in the firm. 

We wish to contribute to the literature by translating the above discussion into two 

innovation management questions. First, shall the firm hire the broker inventor or the one 

who has worked in cohesive environments before? The broker might have access to more 

diverse knowledge while the inventor with cohesive network might have a deeper 
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understanding of specific complex knowledge; and therefore, the firm may face a situation 

similar to the diversity-bandwidth trade-off. We propose that firms shall choose those 

inventors who are brokers but only to a certain degree so that they have a medium-diverse or 

medium-cohesive network. Second, what structure of the network in the receiving firm 

intensifies the impact of the incoming inventor? New inventors bring new knowledge to the 

firm that can be exploited more effectively in cohesive groups. In sum, the optimal firm-level 

outcome can be reached when hiring brokers with some experience in working with cohesive 

groups and make them work in a tightly knit network. This case the firm can optimize the 

innovation output by combining diverse knowledge access with complex understanding. 

To answer the above questions and provide evidence for the argument, we create a 

weighted co-inventor network from all IT-related patents in the harmonized OECD PATSTAT 

1977-2013 database by projecting inventor co-occurrence in patents using hyperbolic 

weighting. We introduce an exponential time decay to deflate tie strength and calculate 

network constraint (Burt, 2004) for every inventor and every year, and the small-worldliness 

indicator for collaboration networks in every firm and every year (Uzzi and Spiro, 2005). 

Next, we apply an inter-firm inventor mobility framework for the period 1990-2000, and 

using a difference-in-differences approach to argue for causal relation between inventor 

mobility and innovation output. Finally, we look at the cumulated number of citations of the 

patents at the hiring firm using linear regression models and various values of time-lags and 

isolate the effect of inventor characteristics from characteristics of networks in firms and 

investigate how the structure of collaboration network within the firm influences the effect of 

incoming inventors.Normal paragraph, 0.25 inch indent.  

2. LITERATURE AND HYPOTHESES 

The mobility of inventors has long been considered a major source of knowledge flow across 

inventing firms because firms benefit from the tacit or embodied knowledge of incoming 

inventors (Almeida and Kogut 1999, Arrow 1962, Levin et al. 1987, Palomeras and Melero 

2010, Zucker et al. 2002). These mobile inventors are not homogenous and have larger 

effects on firm-level outcomes if they bring new technological expertise to the receiving firm 

(Rosenkopf and Almeida 2003, Song et al. 2003). Besides embodied knowledge and skills, 

incoming inventors can also establish new inter-firm ties by maintaining interaction with 

previous colleagues at distinct companies (Agrawal et al. 2006, Breschi and Lissoni 2005, 

2009). These social and professional connections can provide the hiring firm with additional 

access to external knowledge (Powell et al. 1996) and are especially important when the 

research group has to understand complex knowledge (Reagans and McEvily 2003, Sorenson 

et al. 2006). However, very little is known about the role of network characteristics of 

incoming inventors in firm-level innovation. In this paper, we aim to open up this question 
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and also aim to understand how collaboration networks within the receiving firm amplify the 

effect of incoming inventors. 

Mobile inventors are heterogeneous in terms of their network structure and thus provide 

the firm with access to information of various scale and scope. For example, Kemeny et al. 

(2016) showed that the number of connections of incoming managers explains the variations 

in major firm level outcomes – such as profit – because high degree managers channel more 

external information into the firm than low degree managers. However, one might expect 

that the type of ties and the structure of the network can tell us more about information 

access than the mere number of connections. As it was put forward by Granovetter (1973) in 

one of the most influential ideas in social science, weak ties provide access to diverse 

information by linking loosely connected groups (Burt 1992). Consequently, individuals 

bridging structural holes between communities – who are often called brokers – can combine 

larger variety of information (Burt 2000) and can also control the information flow, which 

arguably provides additional gains (Newman 2005). Consequently, brokers are frequently 

associated with better innovation outputs (Burt 2004) than those with cohesive networks 

where the access to diverse knowledge is less likely.  

However, trust and cohesion between connected individuals are very important for 

learning as well and one might consider the weak ties argument with limitations (Coleman 

1988, Putnam 1995). Burt (2000, at p. 11.) also states that “[…] bridges through structural 

holes are the source of the ideas of the new inventions but trustful communication due highly 

connected individuals can be as much as important […]”. In a recent discussion, weak ties are 

confronted with strong ties stressing a diversity-bandwidth trade-off regarding information 

diffusion in networks (Aral and Van Alstyne 2011). It is claimed in this argument that 

complex information is easier to access in cohesive or constrained networks and through 

strong ties due to the high level of trust and bandwidth of communication between alters 

(Aral 2016). Therefore, the individual is expected to collect complex information from strong 

and cohesive contacts in rapidly changing environments and shallow but diverse information 

content from weak ties. 

One might anticipate from the above discussion that the combination of weak and strong 

ties is desirable for firm-level innovation outcomes. For example, Fleming et al. (2007) 

investigate the new combinations of patent subclasses in the assignments and the re-use of 

these combinations in order to model generative creativity on the basis of inventor 

collaborations. They find that broker inventors are more likely to create new combinations in 

general. However, they also demonstrate that new combinations may arise from cohesive 

networks as well if these environments are connected to two or more assignees. Yet, an 

inventor mobility framework can add to the understanding how network cohesion and 

brokerage of inventors influence firm level innovation because we can disentangle the 
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individual effects of incoming inventors from the effects of collaboration networks within the 

firm. 

With all the above discussion in mind, we wish to contribute to the literature in two ways. 

First, we pick one from three alternative hypotheses regarding the relation between the 

network structure of the incoming inventors and the innovation performance of the firm. The 

“Cohesion hypothesis” would suggest that inventors with cohesive network are more 

influential than inventors with diverse networks because they might have developed a deep 

understanding of complex knowledge working in cohesive groups previously (Obstfeld 2005). 

In contrast, the “Structural hole hypothesis” would imply that broker inventors are more 

influential for the firm than non-brokers because they have access to diverse knowledge (Burt 

2004). Instead of these two traditional approaches, we propose the “Optimal cohesion 

hypothesis” and argue that inventors with medium value of network cohesion have the 

greatest influence on the firm not the ones with extremely cohesive or extremely diverse 

networks. This is a reasonable expectation because too little cohesion in the network might 

harm the efficiency of knowledge transfer and trust-based relationships (Uzzi 1997), while 

too much cohesion threatens the innovation effort with isolation from idea flows and with 

lack of economies of scope (Hansen 1999). Instead, inventors with optimal networks should 

have access to diverse information by brokering the network and should be able to work in 

cohesive groups as well to exploit complex knowledge (Aral 2016, Fleming et al. 2007). 

Hypothesis 1: The innovation performance of those firms that hire new inventors with 

medium value of network cohesion is higher than those firms that hire inventors with very 

diverse or very cohesive networks. 

Because networked inventors are more productive and therefore firms might be more 

motivated in hiring them away (Nakajima et al. 2010), productive inventors are likely to 

increase their networks (Lee 2010) and in turn, their mobility further increase their 

productivity because they learn from job switching (Hoisl 2009). This is an important 

endogenous relation between productivity and collaboration networks, and we argue that the 

inventor mobility framework allows us to go after this endogenous change. The collaboration 

network of the mobile inventor is further generated as he/she moves from one firm to 

another (Casper 2007), thus we can look at how the change in network characteristics 

influences firm-level innovation outcomes. We posit that the knowledge the new inventor 

brings into the firm is easier to exploit in cohesive groups than in loosely knit networks. 

Therefore, those firms are relatively more likely to produce high impact innovation that make 

new inventors work in groups and consequently, the network of the mobile inventors 

becomes more cohesive in these situations. 

Hypothesis 2: The innovation performance of those firms is higher where the network of 

mobile inventors become more cohesive than before the mobility event. 
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Hypotheses 1 can be verified by a reversed U-shape association between network 

cohesion of the incoming inventors and the firm-level innovation performance, whereas the 

shift of this optimal value towards cohesion would support Hypothesis 2. This perspective 

accords well with Uzzi and Spiro (2005) who found similar correspondence between the 

success of Broadway musicals and the small-worldliness of artist collaboration networks, 

which indicates cohesive groups brokered by few individuals. We provide new evidence of an 

optimal network structure at the individual level, which can be really useful in innovation 

management decisions because individual characteristics are easier to detect than to optimize 

networks in groups. 

In the last step, we further investigate how collaboration networks within the firm 

influence the effect of new inventors. Based on the diversity-bandwidth literature (Aral 2016, 

Aral and van Alstyne 2011) and the findings of Fleming et al. (2007), we expect that cohesive 

networks within the firm intermediate the novel diversity gained by new broker inventors 

better than loose networks do. We propose that small-world properties of the network shall 

be investigated to better understand this problem. However, instead of applying the small-

worldliness indicator (Uzzi and Spiro, 2005), we focus on two key properties that describe 

small world networks and analyze the interaction term between the characteristics of new 

inventors and the characteristics of the intra-firm networks (Watts and Strogatz, 1998). 

Hypothesis 3: The effect of mobile brokers is further enhanced by high levels of triadic 

closure and low levels of average path length of the inventor collaboration network within the 

firm. 

3. MATERIALS AND METHODS 

3.1 DATA 

We downloaded the OECD Patent Database 1977-2013 directly from the OECD FTP servers in 

February 2015 and used data of patents filed by the European Patent Office (EPO). The full 

dataset contains three sources of data. (1) OECD REGPAT database version February 2015 

covers patent documents filed by the EPO (derived from PATSTAT 2014 autumn edition). 

There are unique identifiers for patents, applicants, and inventors in the data that can be 

matched with other sources in the database. Furthermore, technological classes of the 

patents as well as the year of application are present in the table. The EPO data contains 

2,750,644 patent documents authored by 594,461 inventors. (2) OECD HAN (Harmonized 

Applicant Names) database version February 2015 contains the cleaned and matched names 

of patent applicants. Although OECD statisticians warned us that the data might encounter 

mismatches and errors; this is the best freely available and ready to use dataset that enable 

researchers to trace patenting firms.  There are 2,837,597 unique applicants identified in the 
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HAN database. (3) OECD Citations database version February 2015 contains those EPO, PCT 

or USPTO patents that cite the EPO patents we analyze. The data is derived from EPO’s 

PATSTAT database, autumn 2014.  There are 99,449,770 unique citations in the data. 

These datasets have been merged by the patent identifiers. Then, we narrowed down the 

database to the G06 IPC1 code that refers to “Computing, calculating and counting”. This 

technological class suits our research question (Fleming et al. 2007), because programming is 

a highly innovative process in which fixed costs are relatively low and therefore learning 

through mobility and social networks might play a more important role than in other 

technological areas. 

Table 1  

Number of observations in the data 

Data Observations 

Years 36 

Countries 68 

Firms 28,028 

Treated firms 3,370 

Mobile inventors 6,396 

Mobility 13,519 

 
We exclude those firms that receive more than one new inventor in any of the years the 

analysis covers because we aim to interpret the effect of nodal characteristics of moving 

inventors and cannot estimate this effect if more than one inventor arrives to the firm. The 

remaining dataset contains 28,028 firms located in 68 countries in the period between 1977 

and 2013 (Table 1), out of which 3,370 firms that hired exactly one new inventor per year. 

The number of those inventors who move across firms is 6,396 and there are 13,519 

movements in total. Supporting Information 1 contains descriptive figures about the number 

of inventors, the number of firms, the volume of inventor mobility and the list of countries. 

3.2 NETWORK CREATION AND DETECTION OF INTER-FIRM MOVEMENTS 

The co-inventor network is constructed from an inventor-patent co-occurrence table and 

inventors i and j are connected if they co-author a patent together. If the patent is co-

authored by more than two inventors, the network between them will be a fully connected 

clique by default, which may lead to biased results (Uzzi and Spiro 2005). Therefore, we 

                                                        
1 The International Patent Classification (IPC) provides for a “hierarchical system of language independent 

symbols for the classification of patents and utility models according to the different areas of technology to 
which they pertain”. 
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apply the hyperbolic method suggested by Newman (2001) to project the co-occurrence 

matrix to one-mode ties. Formally, 

 

,         (1) 

 

where  and are 1 if inventor i and inventor j co-author patent k in year u and zero 

otherwise and nk is the number of inventors authoring patent k. Because inventors i and j 

might co-author more than one patent in year u, we maximize  at 1. Further, we 

assume that the strength of the tie weakens over time (Burt 2000) and thus we apply an 

exponential time decay function between the year of patent publication u and year t. The 

exponent of time decay is  and the parameter is set to be equal with 0.1 as it was suggested 

by Jin et al. (2001). In the last step, we set wij,t to  in case of a new collaboration 

between i and j and if . 

The inter-firm movement of inventors is defined as follows. An inventor moves from 

company A to company B if at least one patent application authored or co-authored by 

inventor i has been submitted by company A prior to an application authored or co-authored 

by inventor i has been submitted by company B. We detect the movement from A to B at the 

year when the patent application is submitted by B.2 

The time dimension needs further special care because the data only contains the year of 

application and the year when the patent was filed, which might be problematic because 

collaboration typically happens before the application is submitted. In order to remedy this 

problem, we assume that the edge between inventors i and j is created two years prior the 

year of patent application because there is substantial time needed to work together before 

the patent application can be submitted. This approach is not without limitations, and might 

cause further problems that we have to tackle. 

The first problem is that we set wij,t equal to  two years before the patent 

application and let the weight decay over these two years. One might think that collaboration 

remains intensive over these years and therefore tie weights should be diminished after the 

patent application only. Fortunately, this limitation does not cause serious problem in our 

analysis. In order to check whether the results depend on the procedure of tie-creation, we 

applied two further alternative ways to define the weight of co-inventor ties. First, we created 

ties with simple co-occurrence projection and did not introduce time decay. This way, the 

                                                        
2 We do not consider the date of the application submitted by company A. 
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weight of each co-inventor tie at every point in time was 1. Second, ties made of simple co-

occurrence projection were weighted by the exponential time decay introduced in the main 

text. This case, the weight of each tie was 1 in the year when the tie was established but the 

weight then decreased over time. 

Since these procedures did not change our results, we chose not to report them and stick 

to the weight defined in Equation 1 that we think represents the value of ties created long in 

the past better than any of the other two tie weighting alternatives.  

The second problem is the detection of mobility and the simultaneous change of nodal 

characteristics of mobile inventors versus the structure of collaboration networks within the 

firm. Because we establish the co-inventor ties two years prior to the application, the network 

characteristics of the mobile inventor i at time u is dependent on the projects he/she is 

involved in at company B. We think that this problem offers some interesting insights, and 

therefore will come back to it in detail in Sections 3.3 and 4.2. 

3.3 ESTIMATION STRATEGY 

Our focus on inventor mobility as events that influence firm-level outcomes allow us to take a 

quasi-experimental approach (Mayer and Davis 1999), in which the firm is treated if it hires a 

new inventor. A major problem is that unlike in controlled experiments, where the 

assignment into treated and control groups is random, in quasi-experiments the assignment 

into treated and control groups is not random. In our case, this means that inventors may be 

motivated to move from less productive to more productive firms because more productive 

firms promise better career potentials and innovation quality. Thus, those firms are more 

likely to get assorted to the treated group that have performed better before the event of the 

treatment, which can lead to biased estimates. To overcome this selection bias, we have to 

prove the causal relation between hiring a new inventor and the impact of innovation. 

To control for the endogeneity issue, we apply a difference-in-differences (diff-in-diff) 

approach, which is suitable when the independent variable is available in the data before and 

after the specific action. In the diff-in-diff approach, we first estimate the effect of the new 

inventor on the recipient firm by comparing the innovation outcome before and after the 

treatment and also compare the outcome of the treated firms with the outcome of the non-

treated firms.  This comparison identifies the expected values of the average change and is 

formulated by: 

 

      (2) 
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where the first term refers to the differences in outcomes before and after the treatment 

for the treated group, which may be biased if there are time trends, and the second term uses 

the differences in outcomes for the control group to eliminate this bias. 

The advantage of the diff-in-diff method is that it can avoid many of the emerging 

endogeneity problems while comparing heterogeneous individuals (Meyer 1995). The main 

limitation is called the parallel trend assumption, according to which the accomplishment of 

the control group should reflect what would happen to the treated group with the lack of the 

treatment. This assumption cannot be directly tested because we want to compare two world 

states of one firm, but this is obviously counterfactual, one cannot observe the evolution of 

the treatment group absent the treatment.  Further, it is often very difficult to check the 

suppositions that are made about the unobservable entities and it is possible that despite 

significant treatment effects, the bias may be too large and consequently lead to wrong 

estimates.3 

In the remainder of the analysis, we run linear regression models to measure the effect of 

inventor and firm-level characteristics on firm-level innovation outcomes. The first 

specification is 

 

,    (3) 

 

where  is the innovation outcome of receiving firm B at time t+v and v is the applied 

time lag,  denotes network characteristics of the mobile inventor i  before the 

movement,  stands for the network structure variables of inventor collaboration within 

receiving firm B at the year of the treatment,  is the collection of control variables of 

inventor i and the sending and receiving firms,  equals 1 if firm B receives exactly 1 new 

inventor at time t and zero otherwise and denotes year fixed effects. 

With the introduction of  and  into Equation 3, we first compare the outcome of 

treated firms at time t+v to the outcome of non-treated firms. Then, the rest of the co-

efficients indicate the comparison within the group of treated firms.  

However, because the effects of mobile inventor on firm-level innovation outcomes 

prevail through collaboration with others in the firm, network characteristics change during 

mobility. In the second specification, we investigate the role of change in nodal 

                                                        
3 Accordingly there is a debate about the validity of the diff-in-diff method. Abadie (2005) discusses group 

comparisons in non-experimental studies, Athey and Imbens (2002) concern the interference in diff-in diff 
because of the linearity assumption, Besley and Case (1994) criticize whether this method really can detangle 
the possibility of endogeneity and Bertland et al. (2002) focus on issues related to the standard error of the 
estimates. 
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characteristics of the mobile inventor during the event of mobility together with nodal 

characteristics after mobility: 

 (4) 

where  denotes nodal characteristics after and  the change during 

mobility. 

In the third step, we estimate the effect of nodal characteristics after the mobility event: 

,    (5) 

Finally, we introduce the interaction term between characteristics of inventor i and the 

network structure of company B: 

 (6) 

where  stands for the interaction between the characteristics of mobile 

inventors and the network structure of the receiving firm. 

In order to check the validity of Hypothesis 1, we predict the marginal effects of by 

keeping all other covariates of Equation 3 fixed. Hypothesis 2 is tested by Equation 4 and by 

calculating the marginal effects of  from Equaiton 5. As a result, we can directly measure 

the change in  as a response to a 1 unit change in  and . Hypothesis 3 is tested 

by analyzing the interaction term in Equation 6. 

 

3.4 VARIABLES 

 

The dependent variable of our analysis is the cumulative change of citations to the patents 

owned by the firm. Although criticized in the literature (Beaudry and Shiffaeurova 2011) the 

number of citations has been frequently used to predict patent quality and market value (Hall 

et al. 2005, Harhoff et al. 1999, Mowery and Ziedonis 2002, Trajtenberg 1990). Further, we 

think that a sufficiently long period of citation accumulation can help us avoid the potentials 

of reversed causality discussed in Section 3.3. 

We characterize the nodal property of the mobile inventor with the well-known network 

constraint measure that was proposed by Burt (1992) to distinguish brokers from non-

brokers. This indicator measures the cohesiveness of the ego-network around a node and is 

formulated by: 

 

,        (7) 
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where  and  is the tie weight defined in Equation 1. Thus,  

quantifies the relative weight that i is connected with directly and  quantifies the 

relative weight that i is connected with indirectly – through another contact q – to contact j. 

The indicator Ci,t takes a high value if the relative weight of q and j pairs is high; and takes a 

low value in the contrary case. Consequently, a high Ci,t denotes a cohesive ego-network of i 

because its’ neighbors are strongly connected, while a low Ci,t denotes that i connects 

otherwise poorly connected parts of the network and therefore i is a broker. 

The network constraint is not totally independent from the number of connections of the 

node (Di,t) because the larger number of connections an inventor has the lower probability 

that these connections will also know each other (Burt, 2004). Indeed, Supporting 

Information 2 demonstrates the strongly negative correlation by illustrating the change of 

these indicators along the different components in the network. In order to evade from the 

potential bias caused by the variance of the number of connections, we control for Di,t  and 

also for the interaction between Ci,t and Di,t.  

Properties of the network at the receiving firm B are captured by the small-worldliness 

that consists of the global clustering coefficient (defined also as triadic closure or transitivity, 

TRB,t) and average path length (APLB,t) in the inventor collaboration network within the firm. 

TRB,t compares the number of closed triangles to the possible number of triangles in the 

network of company B at time t. APLB,t measures the degree of separation between nodes 

averaged over the full collection of node pairs in company B at time t. Social networks are 

typically cliquish and only few steps separate two randomly selected individuals in the 

network. Watts and Strogatz (1998) used these two indicators to describe this phenomenon 

as the small-world property of social networks. Uzzi and Spiro (2005) further formulated the 

small-worldliness into a QB,t = TRB,t / APLB,t ratio and showed that collaborative projects with 

medium QB,t produce the best outcomes because social cohesion is paired with diversity in 

these networks.  

To control for the qualities of the mobile inventor i, as well as the sending firm A, we use 

the total number of patent applications (PATi,t and PATA,t) and the total number of citations 

(CITi,t and CITA,t) the inventors and firms submitted and received until time t. Properties of 

the receiving firm B include the total number of patent applications and citations cumulated 

until time t (PATBt  and CITB,t), the number of patent applications after the treatment and 

within the following 10 years (APP10), the number of treatments received within the 

following 10 years (T10), the number of inventors who author or co-author the patent 

applications that were submitted by the firm in years t-2, t-1 or t (INVB,t) and the density of 

the collaboration network of these inventors (DENSB,t).  

Finally, we found a large drop in the total number of citations in years 2011-2013 that we 

could not explain. Therefore, we decided to exclude these years from the citations dataset, 
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which means that the analysis is restricted to the 1990-2000 period since we look at citation 

growth over ten years and thus the last year of mobility events is 2000.  

Our final sample contains 95,788 observations of firm-year combinations out of which 

8,708 observations concern those firms who receive a new inventor. Descriptive statistics of 

and Pearson correlation between main variables are presented in Table 2.  

Table 2  

Descriptive statistics and correlation between main variables 

 

Variable Obs. Mean Std. 
Dev. 

Min Max 1 2 3 4 5 6 

1 Cit 95,788 0.004 0.060 0 1.681 1 
     2 Dit 95,788 0.020 0.373 0 26 0.519* 1  

    
3 QBt 95,788 0.218 0.390 0 1 

-
0.014* 0.002 1  

   

4 DENSBt 95,788 0.462 0.465 0 3 
-

0.0003 0.004 0.568* 1  
  5 INVBt 95,788 0.021 0.335 0 25 0.199* 0.29* 0.017* 0.014* 1  

 6 TRBt 95,788 0.311 0.454 0 1 0.004 0.022* 0.829* 0.418* 0.050* 1  

7 APLBt 95,788 2.175 9.955 0 518.5 0.023* 0.032* 
-

0.042* 
-

0.066* 0.068* 0.226* 
Note: * p<0.05. 

 

4. RESULTS 

4.1 THE EFFECT OF INVENTOR MOBILITY 

 

The diff-n-diff test provides a clear proof for the causal relationship between inventor 

mobility and average citation growth after 10 years of the treatment (Table 3). The 

estimations illustrate that patents assigned to firms treated in year 1995 receive 8 extra 

citations on average during the next ten years compared to patents assigned to control firms. 

This causal relationship stands for treatments in year 2000 as well, where the treatment 

effect is 2 extra citations. Certainly, the treatment effect might deviate from the average. 
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Table 3  

Diff-in-diff test for inventor mobility and citation growth 

  Treatment 1995 Treatment 2000 

 
Y Std. Error t P Y Std. Error t P 

Before 
        Control (C) 0.369 

   

0.520 
   Treated (T) 1.881 

   

0.783 
   Diff (T-C) 1.512 0.152 9.94 0.000*** 0.263 0.075 3.49 0.000*** 

After 
        Control (C) 1.099 

   

1.143 
   Treated (T) 10.654 

   

3.314 
   Diff (T-C) 9.555 0.215 44.44 0.000*** 2.170 0.181 12.1 0.000*** 

Diff-in-
Diff 8.044 0.263 30.54 0.000*** 1.907 0.196 9.74 0.000*** 

 

Further, one can observe in Figure 1 that treated firms did not differ on average from 

non-treated firms before the treatment. In fact, the number of citations starts to deviate from 

the control group two years after the treatment. Until that point, the trend in the treatment 

and control groups are parallel, and the differences are actually nuanced. This observation is 

very important for our further analysis because we can assume that the observed shift in the 

dependent variable would not occur in the absence of the treatment. This assumption makes 

the bases for the further estimations in which we aim to explain the variance of the deviation 

in the treatment group. 

Figure 1  

Citation growth in treated and control firms 

(A) 

 

(B) 

 
Note: (A) The citations of those firms that receive a new inventor in 1995 start to increase 

sharply in 1997. Treated firms have 8 more citations on average than non-treated firms in 

2005. (B) The citations of those firms that receive a new inventor in 2000 start to increase 

sharply in 2002. Treated firms have 2 more citations on average than non-treated firms in 

2010. 
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Table 4  

The impact of nodal characteristics of mobile inventors 
 

 
Cumulative citations of firms 10 years after the treatment 

 

 
(1) (2) (3) 

Network 
characteristics of 
the mobile inventor 

Cit-3 -0.743575*** -0.655676**  

 
(0.285) (0.296)  

Cit - Cit-3  0.786228***  

 
 (0.266)  

Cit   1.103024** 

 
  (0.470) 

Cit  squared   -0.864641** 

 
  (0.389) 

Cit × Dit -0.212756*** -0.274054*** -0.326902*** 

 
(0.053) (0.089) (0.095) 

Dit 0.039537** 0.049212** 0.039174* 

 
(0.017) (0.022) (0.021) 

 
(0.016) (0.016) (0.016) 

Quality of the 
mobile inventor 

CITit -0.018494 -0.035142 -0.031034 

 
(0.047) (0.048) (0.048) 

PATit 0.081113*** 0.074478** 0.045779 

 
(0.031) (0.031) (0.031) 

Quality of the 
recipient firm 

CITBt 0.016212*** 0.016216*** 0.016213*** 

 
(0.004) (0.004) (0.004) 

PATBt 0.034799*** 0.034799*** 0.034807*** 

 
(0.008) (0.008) (0.008) 

Quality of the 
sending firm 

CITAt -0.000139 -0.000141 -0.000146 

 
(0.000) (0.000) (0.000) 

PATAt 0.000366* 0.000368* 0.000379* 

 
(0.000) (0.000) (0.000) 

Treatment and 
dynamics 

T 0.223448*** 0.222537*** 0.222810*** 

 
(0.043) (0.043) (0.043) 

T10 0.205008*** 0.204818*** 0.204854*** 

 
(0.059) (0.059) (0.059) 

APP10 0.024600*** 0.024602*** 0.024587*** 

 
(0.004) (0.004) (0.004) 

Network in the 
recipient firm 

QBt 2.690093*** 2.690847*** 2.690724*** 

 
(0.208) (0.208) (0.208) 

QBt squared -2.741735*** -2.742346*** -2.741847*** 

 
(0.208) (0.208) (0.208) 

DENSBt -0.009633 -0.009736 -0.010092 

 
(0.021) (0.021) (0.021) 

INVBt -0.017001 -0.015714 -0.016300 
 Constant 0.556668*** 0.556669*** 0.556706*** 
 

 
(0.191) (0.191) (0.191) 

 YEAR FE Yes Yes Yes 
 adj. R-sq 0.277 0.277 0.277 
 N 95,788 95,788 95,788 

Note: Standard errors in parentheses. * p<0.10. **p<0.05. *** p<0.01. 
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4.2 NETWORK CHARACTERISTICS OF THE MOBILE INVENTOR  

In order to investigate Hypotheses 1 and 2, we run ordinary least squares (OLS) pooled 

regressions with year fixed effects; standard errors are clustered by the receiving firm. Non-

standardized co-efficients and standard errors of point estimates are reported in Table 4. 

Column 1 reports the co-efficients of variables specified in Equation 3, Column 2 reports 

the co-efficients of variables specified in Equation 4 and Column 3 reports on the coefficients 

of variables specified in Equation 5. The models are stable in terms of the co-efficients and 

explain around 30% of the variation of the independent variable. 

Getting to our first research question, we assess whether broker inventors or inventors 

with cohesive networks enhance the innovation impact of the receiving firm. To start in 

Column 1 of Table 4, we introduce Cit-3 and look at the effect of mobile inventors on the basis 

of their network constraint prior to the event of mobility. The negative coefficient we find 

means that those inventors who were in broker positions before the event of mobility, 

influence the impact of firm-level innovation more than non-broker inventors. The squared 

term of Cit-3 was not significant, and therefore, the linear regression alone would infer a linear 

relationship between being a broker and innovation. However, we calculated the marginal 

effect of Cit-3 from the regression reported in Column 1 by keeping all other covariates fixed 

and plotted it in Figure 2A. These marginal effects in Figure 3A suggest that the effect of Cit-3 

is not completely linear. In fact, we find that the mobile inventor has the greatest impact on 

the recipient firm if his/her network constraint is 0.22, the marginal effect is significant in 

the optimal point. Despite mobile brokers might induce the impact of innovation at the 

recipient firm more than mobile non-brokers, a certain degree of cohesiveness amplifies the 

effect. In sum, calculating the marginal effects, we find support for Hypotheses 1. 

Figure 2  

Marginal effects of network constraint (C) on citation growth. 

(A) 

 

(B) 

 

Note: (A) Network constraint of the mobile inventor at time t-3. The solid line represents 

estimates and the dashed line is the 95% confidence interval. The dotted vertical line at 

Cit=0.22 denotes the highest predicted margin. (B) Network constraint of the mobile inventor 
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at time t. The solid line represents estimates and the dashed line is the 95% confidence 

interval. The dotted vertical line at Cit=0.61 denotes the highest predicted margin. 

However, the mobile inventor establishes new connections with colleagues at the 

receiving firm while working on new patents, which can alter the value of network constraint. 

This problem is more pronounced in time-weighted networks, such as our co-inventor 

network, because newly established ties are stronger by definition and thus can increase 

constraint. To look at this notion, we introduce the change of Ci between time t and t-3 into 

Columns 2 of Table 4. As expected, the coefficient of Cit - Cit-3 takes the positive sign while the 

sign of Cit-3 does not change. In the final step, we introduce Cit and also its squared term in 

Column 3 of Table 4. Indeed, both of the coefficients are significant but with opposite sign 

and their relation suggest a reverse U-shape. We calculate the marginal effect of Cit from 

Column 3 and depict it in Figure 2B. The finding demonstrates that the reversed U-shape 

curve shifts to the right, and the optimal point becomes Cit =0.61. These results support 

Hypotheses 2, we find that new inventors who provide access to new external knowledge 

through their previous contacts enhance the innovation performance of the firm more if they 

work in cohesive projects in the recipient firm and thus increase their network constraint.  

We control for the interaction between Cit and Dit because those inventors are more likely 

to be brokers who have more connections (Burt, 2004). We indeed find a significant effect of 

the interaction term, which suggest that it is important and makes individual effects clearer. 

We find that Dit has a positive effect on the firm-level outcome, which suggests that the 

connectedness of inventors matter. Further inventor characteristics are controlled for as well, 

PATit has a significant effect but CITit is not significant. Regarding the firm-level control 

variables, we find that the firm receives more citations in the future if the new inventor is 

coming from a firm that has many patent applications and if the receiving firm itself has 

produced many patent applications and has already accumulated many citations. The 

coefficients PATA,t and CITA,t are lower by two orders of magnitude than the coefficients of 

PATB,t and CITB,t and CITA,t.is not significant. This means that the quality of the sending firm 

matter less than the quality of the receiving firm. This is intuitive and one might list various 

reasons that cause it; for example, inter-firm knowledge transfer is not automatic and one 

mobile inventor might transfer only a tiny share of sending firm’s knowledge. More 

interestingly, we do not find a significant correlation between the number of inventors 

working for the receiving company. This might be due to the very high correlation between 

INVBt and Cit and Cit-3 and we will come back to this issue in a bit. 

The co-efficients of T is positive and significant in all the models indicating that treated 

firms cumulate more citations within 10 years after the treatment than non-treated firms. As 

expected, T10 and APP10 have positive and significant point estimates, which means that the 



 
 

21 
 
 

more treatment the firm receives and the more patent applications it submits over the 10 

years after the investigated treatment the more citations the firm will receive. 

 

4.3 THE NETWORK ENHANCEMENT EFFECT 

 

The remaining co-efficients in Table 4 are related to the network characteristics of the 

recipient firm. We expected a non-linear correlation between the small-worldliness indicator 

QB,t and citation growth (Uzzi and Spiro, 2005). Indeed, QB,t has a significant positive 

coefficient while its’ squared term has a significant negative coefficient. We calculated the 

marginal effect of QB,t from the regression reported in Column 1 of Table 4 by keeping all 

other covariates fixed and plotted it in Figure 3. One can observe that the margins have an 

almost perfect reversed U-shape. The reversed U-shape means that the impact of innovation 

grows if Q increases from 0 to 0.5 but patents get less citations if Q increases from 0.5 

towards 1 the patents produced by the firm are likely to get less citations. The result suggests 

that medium values of small-worldliness are optimal for innovation and our case resembles 

the example of Uzzi and Spiro (2005). This finding alone supports the idea of the optimal 

structure of inventor collaboration networks because a combination of weak and strong ties is 

needed to better outcomes (Aral, 2016). Those co-inventor networks are more productive 

that contain cohesive groups that can be reached through only few steps because this 

structure enables effective communication. However, the likelihood to find diverse 

information in a network is low if the network is too small-worldly. 

Figure 3  

Marginal effect of the small-worldliness (Q) of inventor collaboration networks 

on citation growth 

 

Note: The solid line represents the point estimates and the dashed lines depict 95% 

confidence interval.  
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The collaboration network of inventors within the receiving firm is an important source of 

knowledge production because the knowledge of the new inventor can be transmitted to 

other projects through connections and also because the new inventor can benefit from 

accessing knowledge of indirect partners. Therefore, we aim to investigate whether cohesive 

or loosely knit co-inventor networks enhance the treatment effect of incoming inventors. 

Here, instead of looking at the accelerator effect of small-worldliness Q, we apply its’ 

components, namely high transitivity (TRBt) and average path length (APLBt) and investigate 

their enhancement effect separately. 

In order to carry out the exercise, we take the number of previously received citations 

CITit as quality indicator of the inventor’s knowledge that might spill over to other colleagues 

in the network. Further, we also consider whether the mobile inventor brings diverse 

knowledge into the firm. To do this, we transform the Cit-3 indicator into 1–Cit-3 that is high if 

the inventor is broker and is low if the inventor is not a broker. This latter transformation will 

make the interpretation of the results easier. Then, we interact these inventor qualities with 

TRBt and APLBt and introduce these variables into Equation 6 along with further control 

variables applied in Section 4.2. We use OLS regression with clustered standard errors by the 

receiving firm for estimation. Table 5 summarizes the results.  

We find that transitivity of the network increases the positive shock that a new high-

impact inventor means for the firm. This is what we would expect because network cohesion 

and strong ties are important for understanding and transferring complex knowledge. We do 

not find that average path length matters for network enhancement. This is surprising 

because short paths could speed up the spreading of new knowledge. 

More importantly, we find that transitivity increases the effect of incoming brokers while 

smaller average path length favours the spillover of their knowledge. These two findings 

together suggest that the small world property of inventor collaboration networks within 

firms enhance the effect of incoming brokers. We verify Hypothesis 3. 
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Table 5  

The enhancement effect of small world networks 

 

Cumulative citations of firms 10 years after the 
treatment 

 (1) (2) (3) 

CITit × TRBt 2.923299*** 
 

4.116214*** 

 
(0.852) 

 
(1.130) 

CITit × APLBt -0.009648 
 

-0.097487 

 
(0.058) 

 
(0.078) 

(1 - Cit-3) × TRBt 
 

0.363337 1.440075** 

  
(0.957) (0.626) 

(1 - Cit-3) × APLBt 
 

-0.107501** -0.157022*** 

  
(0.047) (0.032) 

1 - Cit-3 0.844843*** 1.011258*** 0.980187*** 

 
(0.246) (0.256) (0.242) 

CITit -0.051633** -0.009491 -0.045144** 

 
(0.021) (0.045) (0.021) 

TRBt 0.362160*** -0.001086 -1.077962* 

 
(0.031) (0.957) (0.626) 

APLBt -0.017367*** 0.090112* 0.139651*** 

 
(0.005) (0.047) (0.032) 

Constant -0.338523 -0.504976 -0.473864 

 
(0.325) (0.332) (0.321) 

YEAR FE Yes Yes Yes 

adj. R-sq 0.279 0.279 0.279 

N 95788 95788 95788 

Note: Standard errors in parentheses. * p<0.10. **p<0.05. *** p<0.01. Further control variables 

that are not reported in the table include Dit, Cit × Dit, INVBt, DENSBt, CITBt, PATBt, CITAt, PATAt, PATit, 

APP10, T, T10. Standard errors are clustered by the receiving firm. 

5. CONCLUSIONS 

A quasi-experimental approach has been taken in this paper to assess the role of co-inventor 

networks on firm-level innovation performance and the events of inter-firm mobility of 

inventors were used as sources of external variation.  

We argue that the nodal characteristics of those new inventors who bring new knowledge 

into the firm matter and thus we can better understand if individuals with diverse access to 

external knowledge or those who are located in cohesive groups add more to the innovation 

process. Our first finding suggests that neither extremely high nor extremely low but 

moderately low values of network cohesion are optimal for innovation performance. In other 

words, those inventors make the largest impact who are brokers but have previous experience 
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in working with cohesive groups as well. Further, firm-level outcomes are optimal if the new 

inventors collaborate in cohesive groups within the firm because this makes the exploitation 

of the new knowledge more effective. Finally, we argue that the structure of the collaboration 

network of inventors within the firm scales up the positive shock of knowledge inflow. 

Indeed, we find that small world networks are more efficient in enhancing the effect of 

incoming high-impact inventors and brokers. The effects of new inventors are higher if the 

transitivity of the network is high and if the average path length is low.  

The results fit well to the diversity-bandwidth threshold framework that has been recently 

developed in sociology (Aral and van Alstyne, 2011) because knowledge production is optimal 

when a large variety of information accessed through diverse networks are understood and 

processed in cohesive groups that can foster the communication of complex contents. The 

contributions we make in this paper have high relevancy for innovation management and can 

be applied in two ways. First, firms might be able to increase the impact of their innovation 

output by looking at the position of potential new inventors and selecting that one whose 

network constraint is close to the optimal value. Second, firms can further enhance the 

influence of new inventors by establishing cohesive direct environments for them and quick 

access through indirect ties to further knowledge produced and stored in other projects of the 

company. 

Further research is needed to show how these results hold in other situations because the 

potentials for knowledge transfer through inventor mobility and through co-inventor 

contacts might differ across industries. Furthermore, real communication flows should be 

analyzed to shed more light on how knowledge is created and combined in professional 

networks and to what extent external ties are used by mobile inventors in the recipient firm. 

Last, instead of the quasi-experimental approach, organized experiments will help us better 

understand causal relations between co-inventor networks and innovation performance. 
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Supporting Figure 1  

The number of patent applications, inventors and inventor mobility over the 
period and their country distributions 

  

 

 

 

Countries that are covered in the data: Argentina, 
Austria, Australia, Bahamas, Barbados, Belarus, 
Belgium, Bermuda, Brasilia, Brit-Virgin Islands, 
Canada, Cayman Islands, Chile, China, Croatia, 
Cuba, Cyprus, Czech-Republic, Denmark, Estonia, 
Finland, France, Georgia, Germany, Greece, 
Hungary, Iceland, Ireland, India, Israel, Italy, 
Japan, Kuwait, Latvia, Liechtenstein, Luxemburg, 
Malaysia, Malta, Mexico, Monaco, Netherlands, 
Netherlands Antilles, Norway, New-Zealand, 
Philippines, Poland, Portugal, Puerto Rico, Qatar, 
Romania, Russia, Samoa, Saudi Arabia, Singapore, 
Slovakia, Slovenia, South Africa, South-Korea, 
Spain, Sweden, Switzerland, Turkey, Ukraine, 
United Arab Emirates, United Kingdom, United 
States, Uruguay, Uzbekistan. 
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Supporting Table 1  

Components of the co-inventor network, 2013 

Inventors 2 3 4 5-10 11-20 21-50 51-100 101- 
# 
Components 27,207 17,768 10,276 14,046 1,701 461 62 40 

Avg. Dit 1 1.957 2.884 4.678 7.138 8.238 8.186 9.001 

Avg. Cit N.A. 1 0.921 0.671 0.495 0.467 0.482 0.491 

 
Despite the growing number of brokers, the co-inventor network contained 71,561 isolated 

components in year 2013. The components of the network are not connected to each other, 

thus the network has a very fragmented structure. The vast majority of the components 

contain only a small number of nodes (Table SI3), 77% of the components have less than five 

nodes. However, there are also a considerable number of large components that account for 

many inventors. It is illustrated in Table SI3 that the inventors in large components have 

more connections on average than in small components. The average value of constraint 

decreases as well as the size of the components grows, which means that brokers might be 

found in large components. However, the value of average constraint does not seem to 

decrease monotonously, the value in the largest components are almost identical to the 

components of 11-20 inventors. 

We visualize the largest components of the co-inventor network in Figure SI3 by using 

distinct color codes for each component. Figure SI3A reveals that these large components 

have similar structures; they contain closely connected groups of inventors that. The largest 

network in Figure SI3B contains relatively small closely connected groups, in which inventors 

have all worked with each other on a patent. These groups are linked by few brokers who 

have worked with at least one inventor in one closely connected group and at least one 

inventor in another closely connected group. The second largest network in Figure SI3C has a 

somewhat different structure. The closely connected groups are large and the networks of 

these groups are full, which means that all of the concerning inventors have worked with each 

other.   
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Supporting Figure 2  

The largest components in the co-inventor network, 2013. 

(A) 

 
(B) 

 

(C) 

 
Note: (A) The components that have more than 100 inventors, 2013. Force Atlas 2 algorithm 

was used. (B) The largest component containing 717 inventors, 2013. Fruchterman-Reingold 

algorithm was used. (C) The second largest component containing 504 inventors, 2013. 

Fruchterman-Reingold algorithm was used. 


