
 

   
 

MŰHELYTANULMÁNYOK                           DISCUSSION PAPERS  

 

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES,  

HUNGARIAN ACADEMY OF SCIENCES - BUDAPEST, 2019 

 

MT-DP – 2019/14 

 
 
 

 

Weighted nucleoli and dually essential coalitions 

(extended version)  

 

TAMÁS SOLYMOSI

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 

 
 

Discussion papers 
MT-DP – 2019/14 

 
Institute of Economics, Centre for Economic and Regional Studies,  

Hungarian Academy of Sciences 
 

KTI/IE Discussion Papers are circulated to promote discussion and provoque 
comments.  

Any references to discussion papers should clearly state that the paper is preliminary. 
Materials published in this series may subject to further publication. 

Weighted nucleoli and dually essential coalitions (extended version) 

Author: 
 
 
 

Tamás Solymosi 

Department of Operations Research and Actuarial Sciences,  

Corvinus University of Budapest, 

and Research Group of the Cooperation of Excellences Grant (KEP-6/2017),  

senior research fellow 

Institute of Economics, Centre of Economics and Regional Studies,  

Hungarian Academy of Sciences,  

E-mail: tamas.solymosi@uni-corvinus.hu 

 
 
 
 
 
 
 
 

May 2019 
 
 
 
 
 
 
 
 
 



 
 

 
 

Weighted nucleoli and dually essential coalitions 

(extended version)  

Tamás Solymosi 

Abstract  

 

We study linearly weighted versions of the least core and the (pre)nucleolus and investigate 

the reduction possibilities in their computation. We slightly extend some well-known related 

results and establish their counterparts by using the dual game. Our main results imply, for 

example, that if the core of the game is not empty, all dually inessential coalitions (which can 

be weakly minorized by a partition in the dual game) can be ignored when we compute the 

per-capita least core and the per-capita (pre)nucleolus from the dual game. This could lead to 

the design of polynomial time algorithms for the per-capita (and other monotone 

nondecreasingly weighted versions of the) least core and the (pre)nucleolus in specific classes 

of balanced games with polynomial many dually essential coalitions. 

 

 

 

JEL: C71 

 

Keywords: nucleolus, least core, weighted nucleoli, efficient computation, cooperative 

game 

 

Acknowledgement 

 

The author is supported by the Hungarian Academy of Sciences via the Cooperation of 

Excellences Grant (KEP-6/2017). 

The author also acknowledges support from the Hungarian National Research, Development 

and Innovation Office via grant NKFI K-119930.  



 
 

 
 

Súlyozott nukleoluszok és duálisan lényeges koalíciók 

(bővített változat) 

 

Solymosi Tamás 

Összefoglaló  

 
Dolgozatunkban a szűkmag és a nukleolusz lineárisan súlyozott változatainak kiszámítása 

során felhasználható egyszerűsítési lehetőségekkel foglalkozunk. Kiterjesztünk már ismert 

kapcsolódó eredményeket és analóg állításokat látunk be a duális játékot használva.  

Megmutatjuk, hogy amennyiben a játék magja nem üres, például a per-capita szűkmag, 

illetve a per-capita nukleolusz meghatározásakor figyelmen kívül hagyhatók a duális játékban 

nem lényeges koalíciók (amelyek értéke a duális játékban alulról korlátozható egy partíciójuk 

értékével). Ezen fő eredményünk lehetőséget teremt például a per-capita szűkmag, illetve a 

per-capita nukleolusz polinomiális időben történő kiszámítására olyan nemüres maggal 

rendelkező játékosztályokban, amelyek duálisa csak polinomiálisan sok duálisan lényeges 

koalíciót tartalmazhat.  

 

 

JEL: C71 

 

Tárgyszavak: nukleolusz, szűkmag, súlyozott nukleolusz, hatékony kiszámítás, kooperatív 

játék 

 



Weighted nucleoli and dually essential coalitions
(extended version)∗
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Abstract

We consider linearly weighted versions of the least core and the (pre)nuc-
leolus and investigate the reduction possibilities in their computation. We
slightly extend some well-known related results and establish their counter-
parts by using the dual game. Our main results imply, for example, that if
the core of the game is not empty, all dually inessential coalitions (which can
be weakly minorized by a partition in the dual game) can be ignored when
we compute the per-capita least core and the per-capita (pre)nucleolus from
the dual game. This could lead to the design of polynomial time algorithms
for the per-capita (and other monotone nondecreasingly weighted versions of
the) least core and the (pre)nucleolus in specific classes of balanced games
with polynomial many dually essential coalitions.

Keywords: per-capita (pre)nucleolus, least core, computation

1 Introduction

The nucleolus (Schmeidler, 1969) is one of the major single-valued solution con-
cepts for transferable utility cooperative games. It seemingly depends on all coali-
tional values, but a closer look reveals the inherent high redundancy in its defini-
tion. Indeed, as Brune (1983), and later Reijnierse and Potters (1998) have proved:

∗This is an extended version of the working paper Solymosi (2016) Weighted nucleoli and dually
essential coalitions, Corvinus Economics Working Papers - CEWP 2016/12, http://unipub.lib.uni-
corvinus.hu/2480/ . Research partially supported by the Hungarian National Research, Development
and Innovation Office via the grant NKFI K-119930.
†Department of Operations Research and Actuarial Sciences, Corvinus University of Bu-

dapest, H-1828 Budapest, Pf. 489, Hungary; and Research Group of the Cooperation of Excel-
lences Grant (KEP-6/2017), Institute of Economics, Hungarian Academy of Sciences. E-mail:
tamas.solymosi@uni-corvinus.hu.
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in any n-player game there are at most 2n−2 coalitions which actually determine
the nucleolus. Unfortunately, the identification of these nucleolus-defining coali-
tions is no less laborious as computing the nucleolus itself. On the other hand,
if special properties of the game enable us to specify a priori a polynomial size
characterization family of coalitions for the nucleolus, then we can compute it in
polynomial time (in the number of players).

There are several classes of balanced games for which polynomial time nucle-
olus algorithms are available in the literature. The key to the efficiency of some of
these algorithms (e.g. in case of assignment games) is Huberman’s (1980) theorem
stating that in a balanced game all nucleolus-defining coalitions are essential (can-
not be weakly majorized by a partition) in the game, hence the inessential ones can
be ignored. Although typically not explicitly mentioned, but several other known
polytime algorithms (e.g. in case of fixed-tree games) rely on the dual counterpart
of Huberman’s result: in computing the nucleolus of a balanced game, all dually
inessential coalitions (which can be weakly minorized by a partition in the dual
game) can be ignored.

Our aim is to investigate what kinds of weighted versions of the nucleolus can
also be computed by taking into account only coalitions in these families. Since the
above mentioned reducibility results require nonemptiness of the core, our domain
will also be the class of balanced games. We are mostly concerned about the per-
capita nucleolus (Grotte, 1970, 1972), so we restrict our study to linear weight
systems. On the other hand, we allow weights that depend not only on the size, but
also on the value of the coalitions. In particular, we allow the weight of a coalition
to be equal to its value (provided it is positive), thus some of our results also apply
to the proportional nucleolus of a balanced game (with only positive coalitional
values).

The nucleolus is based on the coalitional surplusses (the difference between
the payoff to and the value of the coalition). This measure, however, does not take
into account neither the size, nor the value (or any other characteristic that maybe
important for an application) of the coalitions. Various weighted nucleoli (based on
weighted surplus measures) were considered by several authors, but mostly from
an axiomatization point of view, see e.g. (Derks and Peters, 1998), (Derks and
Haller, 1999), (Kleppe, 2010), (Kleppe et al., 2016), (Calleja et al., 2018). We
address issues in connection with their computation.

In general, a linearly weighted nucleolus can be determined by the very same
methods as the (standard) nucleolus, only straightforward adjustments are needed
that only negligibly effect the performance. This is particularly true for the most
frequently applied sequential linear programming approach pioneered by Kopelowitz
(1967) (for a recent implementation finely tuned even for large games, see (Nguyen
and Thomas, 2016)). On the other hand, and in contrast to the rich literature on
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the computation of the (standard) nucleolus in specific classes of games, we can
only mention the algorithm by Huijink et al. (2015) that computes the per-capita
nucleolus in bankruptcy games. One of our results might shed light on a possible
reason for this phenomenon. We demonstrate (in Example 3) that the family of
essential coalitions is not sufficient to determine the per-capita nucleolus, not even
in a balanced game, so Huberman’s (1980) reducibility result cannot be used in the
computation of the per-capita nucleolus.

We find, however, that if we compute the nucleolus of a balanced game from the
dual coalitional values, Huberman’s idea works, not just for the (standard) nucle-
olus (that is implicitly the basis for many known efficient algorithms), but also for
the per-capita and other monotone nondecreasingly weighted nucleoli. We prove
(in Theorem 4) that if the core of the game is not empty, all dually inessential
coalitions (those which can be weakly minorized by a partition in the dual game)
can be ignored when we compute the per-capita (or other monotone nondecreas-
ingly weighted versions of the) nucleolus from the dual game. We believe that
this observation could become the theoretical basis for various polynomial time
algorithms (yet to be) designed for the per-capita nucleolus in specific classes of
balanced games known to have polynomial many dually essential coalitions (e.g.
assignment games, fixed-tree games). Other candidates for this endeavour might
be the well-known classes of games whose duality relations are discussed by Oishi
and Nakayama (2009). The usefulness of looking at the dual games also in the
axiomatizations of solutions is underlined by Oishi et al. (2016).

The organization of the paper is as follows. We collect the necessary gen-
eral preliminaries and introduce the linear weight systems in the next section. In
section 3, we discuss weighted least cores, since computing them is the first step
in finding the weighted (pre)nucleoli. We present properties of the weight func-
tion under which the family of essential coalitions is sufficient to determine the
weighted least core, and also when the family of dually essential coalitions is suf-
ficient to determine the weighted least core in the dual game of a balanced game.
In section 4, we present the weighted primal and dual versions of the lexicographic
center procedure (Maschler, Peleg, Shapley, 1979) that sequentially reduces the set
of allowable payoffs until it shrinks to the (pre)nucleolus allocation, and discuss
which properties of the weight system make the inessential coalitions, or in the
dual version the dually inessential coalitions redundant in these sequential opti-
mization processes when applied to balanced games. In section 5 we discuss how
and when we can refine our results by combining the primal and dual restricted
descriptions of the standard / per-capita least core / (pre)nucleolus. In that last sec-
tion we also illustrate the simplification potential of applying dual (in)essentiality
on the 5-player (balanced) cost game discussed by Suzuki and Nakayama (1976).
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2 Preliminaries

A transferable utility cooperative game on the nonempty finite set N of players is
defined by a coalitional function v : 2N −→ R that satisfies v( /0) = 0. The function
v specifies the worth of every coalition S⊆ N. We shall denote by

N = {S⊆ N : S 6= /0,N}

the collection of nontrivial coalitions. The player set N will be fixed throughout
the paper, so we drop it from the notation and refer to v as the game. The game v is
called superadditive, if S∩T = /0 implies v(S∪T )≥ v(S)+ v(T ) for all S,T ⊆ N;
and subadditive, if its negative −v is superadditive.

Given a game v, a payoff vector x ∈ RN is called efficient, if x(N) = v(N);
coalitionally rational, if x(S)≥ v(S) for all S⊆N; where, by the standard notation,
x(S) = ∑i∈S xi if S 6= /0, and x( /0) = 0. We denote by Ef(v) the set of efficient
payoff vectors called the preimputation set, and by Co(v) the set of efficient and
coalitionally rational payoff vectors called the core of the game v. Games with a
nonempty core are called balanced.

The excess e(S,x,v) = v(S)− x(S) is the usual measure of gain (or loss if neg-
ative) to coalition S ⊆ N in game v if its members depart from allocation x ∈ RN

in order to form their own coalition. Note that in any game v, e( /0,x,v) = 0 for
all x ∈ RN , and the core is the set of efficient allocations which yield nonpositive
excess for all nontrivial coalitions. It will be more convenient to use the negative
excess f (S,x,v) := −e(S,x,v), we call it the surplus of coalition S at allocation x
in game v.

The dual game (N,v∗) of game (N,v) is defined by v∗(S) = v(N)− v(N \ S)
for all S ⊆ N. Notice that v∗( /0) = 0, so v∗ is indeed a game, and v∗(N) = v(N),
so Ef(v∗) = Ef(v) for any game v. The name dual is explained by the relation
v∗∗(S) = v(S) for all S⊆ N.

Since N \S ∈N for each S ∈N , and

f (S,x,v) =− f (N \S,x,v∗) for all x ∈ Ef(v) = Ef(v∗), (1)

the core of a game coincides with the anticore (where the inequalities are reversed)
of its dual game, that is,

Co(v) = Co∗(v∗) := {x ∈ Ef(v∗) : f (T,x,v∗)≤ 0 ∀T ∈N } . (2)

We call (2) the dual description of the core.
We will investigate which families of nontrivial coalitions are sufficient to de-

termine a solution in a game and which coalitions are redundant. Two types of
coalitions will be considered.
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Coalition S ⊆ N is called inessential in game (N,v), if its value can be weakly
majorized by a proper partition, i.e. if v(S)≤ v(S1)+ . . .+v(Sk) for some partition
S = S1∪ . . .∪Sk with k≥ 2. A coalition is essential in a game if it is not inessential.
Observe that an inessential coalition has a weakly majorizing partition consisting
only of essential coalitions. Notice that all 1-player coalitions are essential in any
game. We denote by E (v) ⊆N the family of essential coalitions in game v. It is
straightforward that all inessential coalitions are redundant for the core, i.e.

Co(v) = Co(E (v),v) := {x ∈ Ef(v) : f (T,x,v)≥ 0 ∀T ∈ E (v)} . (3)

Observe that the core Co(v) = Co(N ,v) is described by 1+ |N | = 2|N|− 1 lin-
ear constraints but in the restricted description Co(E (v),v) the number of linear
constraints is 1+ |E (v)| that could be significantly smaller than 2|N|−1.

The dual description (2) of the core also has a reduced form. Coalition S ⊆
N is called dually inessential in game (N,v), if it is anti-inessential in the dual
game, i.e. it has a proper partition S = S1∪ . . .∪ Sk with k ≥ 2 such that v∗(S1)+
. . .+ v∗(Sk) ≤ v∗(S). A coalition is dually essential in a game if it is not dually
inessential. Observe that a dually inessential coalition has a minorizing partition
in the dual game that consists only of dually essential coalitions. Notice that all
1-player coalitions are always dually essential. We denote by E ∗(v∗) ⊆ N the
family of dually essential coalitions. It is straightforward that all dually inessential
coalitions are redundant for the core, i.e.

Co(v) = Co∗(E ∗(v∗),v∗) := {x ∈ Ef(v∗) : f (T,x,v∗)≤ 0 ∀T ∈ E ∗(v∗)} . (4)

The above remark on the significant reduction possibility in the size of the (dual)
core description applies here too.

The standard surplus (excess) does not take into account neither the size, nor
the value (or any other characteristic that maybe important for an application) of
the coalitions. More general excess functions were considered by several authors,
but we restrict ourselves to the weighted versions that preserve the linearity of the
measure with respect to the payoff variables.

In the sequel we assign a (maybe coalition specific) positive weight q(S)> 0 to
each nontrivial coalition S ∈N , and define the q-weighted surplus (q-surplus for
short) of nontrivial coalition S ∈N at allocation x ∈ RN in game v to be

fq(S,x,v) =
x(S)− v(S)

q(S)
∀S ∈N . (5)

Note that no matter which system {q(S)> 0 : S ∈N } of weights is used,

Co(v) = {x ∈ Ef(v) : fq(S,x,v)≥ 0 ∀S ∈N },
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i.e., the core is the set of efficient allocations which yield nonnegative q-surplus for
all nontrivial coalitions.

We say that a weight function is subadditive, if S∩T = /0 implies q(S)+q(T )≥
q(S∪T ) for all S,T ∈N ; superadditive, if the inequality is reversed; additive, if
both subadditive and superadditive; monotone nondecreasing, if S ⊂ T implies
q(S) ≤ q(T ) for all S,T ∈ N ; and monotone nonincreasing, if the inequality is
reversed.

We consider two surplus-based solutions: the least core and the (pre)nucleolus.
The weighted versions of both solutions (formally defined later) are obtained if
we replace the standard surplus measure f with the weighted surplus fq in their
respective definitions. As special cases we get

• the (standard) least core and nucleolus, if we take the monotone and subad-
ditive (but not superadditive) weight function q(S) = 1 for all S ∈N ;

• the per-capita least core and nucleolus, if we take the monotone and additive
weight function q(S) = |S| for all S ∈N ;

• for positive-valued game v (i.e. v(S)> 0 for all S 6= /0), the proportional least
core and nucleolus, if we take the weight function q(S) = v(S) for all S∈N .

3 Weighted least cores

The least core LC(v) of a game v was first formally treated by Maschler, Peleg and
Shapley (1979) as the set of all efficient allocations that maximize the minimum
surplus of nontrivial coalitions, i.e.,

LC(v) := argmax
x∈Ef(v)

min
S∈N

f (S,x,v).

Recall that in any game the least core is a nonempty polytope.
Given a positive weight function q, the q-weighted least core LCq(v) (q-least

core for short) is defined analogously as the set of all efficient allocations that
maximize the minimum q-surplus of nontrivial coalitions, i.e.,

LCq(v) := argmax
x∈Ef(v)

min
S∈N

fq(S,x,v),

or equivalently, in a more operational form,

α1
q (v) := max x∈Ef(v) min S∈N fq(S,x,v)

LCq(v) := {x ∈ Ef(v) : fq(S,x,v)≥ α1
q (v) ∀S ∈N }. (6)
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Observe that for any game v and weight function q, the uniformly guaranteed q-
surplus level α1

q (v) is well defined, the q-least core is a nonempty polytope, and
Co(v) 6= /0 if and only if α1

q (v) ≥ 0. In a balanced game v, LCq(v) ⊆ Co(v), and
LCq(v) = Co(v) if and only if α1

q (v) = 0.
We will also consider certain restricted versions when only coalitions coming

from a nonempty family M ⊆ N are taken into account. The family M will
always be “rich enough” so that the restricted q-least core LCq(M ,v) will always
be a nonempty polytope like the unrestricted one LCq(v) = LCq(N ,v). For the
same reason, also in the restricted case α1

q (M ,v) will always be well defined.
The linearity of the q-surplus in the payoff variables allows us to compute

α1
q (v) with the following LP with all variables x ∈ RN and α ∈ R unrestricted in

sign:

α →max
x(N) = v(N)
x(S)−q(S)α ≥ v(S) ∀S ∈N

(7)

Clearly, this LP has optimal solution(s), its optimum value equals to α1
q (v), and its

optimal solutions are of the form (x,α1
q (v)) with some q-weighted least core payoff

vector x ∈ LCq(v).
Since v(N) = v∗(N) and N also contains N \S for each S ∈N , if we subtract

from the efficiency equation the inequalities related to the subcoalitions and reverse
the direction of optimization by substituting α = −β , we get an equivalent LP in
terms of the dual game:

β →min
x(N) = v∗(N)
x(T )−q(N \T )β ≤ v∗(T ) ∀T ∈N

(8)

Notice that unless q(T ) = q(N \T ) for all T ∈N , the inequalities in (8) can not be
expressed in terms of the q-surplus in the dual game, since in the inequality related
to T variable β is multiplied by the weight q(N \T ) of the complement coalition.
Thus, unlike for the core, the q-least core of a game typically can not be obtained
by simply reversing the inequalities in the definition of the q-weighted least core
of the dual game. Since the general weighted version of relation (1) is

q(S) fq(S,x,v) =−q(N \S) fq(N \S,x,v∗) for all x ∈ Ef(v) = Ef(v∗), (9)

and f (S,x,v) = q(S) fq(S,x,v), we introduce a transformed version of the weighted
surplus in the dual game:

gq(T,x,v∗) :=
f (T,x,v∗)
q(N \T )

=
x(T )

q(N \T )
− v∗(T )

q(N \T )
.
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Then the dual description of the q-weighted least core is

LC∗q(v
∗) = argmin

x∈Ef(v∗)
max
S∈N

gq(S,x,v∗),

or equivalently, in a more operational form,

β 1
q (v
∗) := min x∈Ef(v∗) max T∈N gq(T,x,v∗)

LC∗q(v∗) := {x ∈ Ef(v∗) : gq(T,x,v∗)≤ β 1
q (v
∗) ∀T ∈N }. (10)

Clearly, β 1
q (v
∗) = −α1

q (v). Observe that for the standard least core LC(v) (when
q(S) = 1 for all S ∈N ) the dual description simplifies to

LC∗(v∗) = argmin
x∈Ef(v∗)

max
S∈N

f (S,x,v∗),

that is a straightforward counterpart of its definition. It should be emphasized,
however, that in general the transformed weighted surplus gq(S,x,v∗) must be used
in the dual description.

The following characterizations of weighted least-core allocations in terms of
balanced collections can be easily obtained by standard LP duality arguments ap-
plied to the LP descriptions (7) or (8).

Proposition 1. An efficient payoff allocation x belongs to the q-weighted least core
of game v if and only if the family of nontrivial coalitions that satisfy either type of
the following two properties contains a (minimal) balanced collection

1. at x, the coalition minimizes fq(S,x,v) over all coalitions S ∈N in game v;

2. at x, the coalition maximizes gq(T,x,v∗) over all coalitions T ∈N in the
dual game v∗.

For the standard least core, the first type of characterization (in terms of v) is
well-known (cf. e.g. Peleg and Sudhölter, 2003, p.183).

There is a close relationship between the two types of (minimal) balanced col-
lection(s) mentioned in Proposition 1. If, at a q-weighted least core allocation x,
we replace all coalitions of a (minimal) balanced collection contained in the family
S 1(x) of coalitions with minimum q-surplus fq(S,x,v) with their complements,
we get a (minimal) balanced collection contained in the family T 1(x) of coalitions
with maximum transformed dual q-surplus gq(N \S,x,v∗), and vice versa.

We now identify families of redundant coalitions for weighted least cores.

Theorem 1. 1. In a balanced game v, all inessential coalitions are redundant
for LCq(v) with a subadditive weight function q. In particular, for the
standard least core LC(v) = LC(E (v),v), and for the per-capita least core
LCpc(v) = LCpc(E (v),v).
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2. In a nonbalanced game v, all inessential coalitions are redundant for LCq(v)
with a superadditive weight function q. In particular, for the per-capita least
core LCpc(v) = LCpc(E (v),v).

3. In any game v, all inessential coalitions are redundant for LCq(v) with
an additive weight function q. In particular, for the per-capita least core
LCpc(v) = LCpc(E (v),v).

Proof. For all three claims, let S ∈N \E (v) be inessential in game v, because of
the partition S = S1∪S2 with S1,S2 ∈ E (v) and v(S)≤ v(S1)+v(S2). For simplicity
of notation, we assume (without loss of generality) that the weakly majorizing
partition consists only of k = 2 subcoalitions. Then at any x ∈ RN , we have the
inequalities

v(S1) + q(S1)α ≤ x(S1)
v(S2) + q(S2)α ≤ x(S2)

v(S1)+ v(S2) + [q(S1)+q(S2)]α ≤ x(S)
v(S) + q(S)α ≤ x(S)

(11)

where the third one is the sum of the first two. By the above assumption, v(S) ≤
v(S1)+ v(S2), so the third inequality implies the last one, hence that is redundant
for the system in (7), if [q(S1)+q(S2)]α ≥ q(S)α . This condition clearly holds, if

1. α ≥ 0 (i.e. v is balanced) and q is a subadditive weight function.

2. α < 0 (i.e. v is not balanced) and q is a superadditive weight function.

3. q is an additive weight function.

Since S1,S2 ∈E (v), the above argument can be independently done for any inessen-
tial S ∈N \E (v). The claims for the special least cores follow from the properties
of their respective weight functions.

As the following example demonstrates, the second and third statements in
Theorem 1 are not true for the standard least core LC.

Example 1. Consider the following game on player set N = {1,2,3,4} given by
v(N) = v(14) = v(24) = v(124) = v(134) = v(234) = 18, v(34) = 12, v(12) =
v(123) = 6, and v(R) = 0 for all other coalitions R ∈N .

It is easily checked that v is superadditive, but not balanced, e.g. 1
2 v(12) +

1
2 v(134)+ 1

2 v(234) = 21 > 18 = v(N). The maximum uniformly guaranteed sur-
plus is α1(v)=−2, the standard least core is a singleton LC(v)= {x=(2,2,0,14)}.
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Indeed, at allocation x, the family of coalitions with smallest surplus (= −2) is
S 1(x) = {12,14,24, 123,134,234} that is the union of the (minimal) balanced
collections {12,134,234}, {14,123,234}, and {24,123,134}, so by Proposition 1,
x ∈ LC(v). The uniqueness of this least core allocation comes from the ”full rank
nature” of S 1(x).

On the other hand, if we take into account only the essential coalitions E (v) =
{1,2,3,4,12,14,24,34} in (6), we get another uniform surplus level α1(E (v),v) =
−6

5 , and another (singleton) least core LC(E (v),v) = {y = (12
5 ,

12
5 ,−

6
5 ,

72
5 )}. In-

deed, at allocation y, the family of essential coalitions with smallest surplus (=
−6

5 ) is S 1(E (v),y) = {3,12,14,24} that is itself a (minimal) balanced collection
of ”full rank”, so by Proposition 1, y ∈ LC(E (v),v), and y is the unique E (v)-
restricted least core allocation.

In contrast, and as an illustration of the second statement in Theorem 1, the
uniformly guaranteed per-capita surplus is α1

pc(v) =−3
4 , the (singleton) per-capita

least core is LCpc(v) = {z = (9
4 ,

9
4 ,−

3
4 ,

57
4 )}. Indeed, at allocation z, the family

of coalitions with smallest per-capita surplus (= −3
4 ) is S 1

pc(z) = {3,12,14,24,
123,134,234} that is the union of the balanced collections {3,12,14,24} and the
above S 1(x), so by Proposition 1, z ∈ LCpc(v). Since {3,12,14,24} ⊂ E (v) and
it is itself a ”full rank” (minimal) balanced collection, the restriction to the family
of essential coalitions gives the same α1

pc(E (v),v) =−3
4 and (singleton) least core

LCpc(E (v),v) = {(9
4 ,

9
4 ,−

3
4 ,

57
4 )} as in the unrestricted case. �

Let us see redundant coalitions in the dual descriptions of weighted least cores.

Theorem 2. In a balanced game v, all dually inessential coalitions are redun-
dant for LCq(v) = LC∗q(v∗) with a monotone nondecreasing weight function q.
In particular, for the standard least core LC(v) = LC∗(E ∗(v∗),v∗), and for the
per-capita least core LCpc(v) = LC∗pc(E

∗(v∗),v∗).

Proof. Let T ∈ N \ E ∗(v∗) be dually inessential, because of the partition T =
T1∪T2 with T1,T2 ∈ E ∗(v∗) and v∗(T1)+v∗(T2)≤ v∗(T ). For simplicity of notation,
we assume (without loss of generality) that the weakly minorizing partition consists
only of k = 2 subcoalitions. Then at any x ∈ RN , we have the inequalities

x(T1)≤ v∗(T1) + q(N \T1)β
x(T2)≤ v∗(T2) + q(N \T2)β

x(T ) ≤ v∗(T1)+ v∗(T2) + [q(N \T1)+q(N \T2)]β

x(T ) ≤ v∗(T ) + q(N \T )β

(12)

where the third one is the sum of the first two. By the above assumption, v∗(T1)+
v∗(T2)≤ v∗(T ), so the third inequality implies the last one, hence that is redundant
for the system in (8), if [q(N \ T1) + q(N \ T2)]β ≤ q(N \ T )β . This condition
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clearly holds if β = −α ≤ 0 (i.e. v is balanced) and the weight function q is
monotone nondecreasing, because then (N \ T1)∩ (N \ T2) = N \ T 6= /0 implies
q(N \T )≤min{q(N \T1),q(N \T2)} ≤ q(N \T1)+q(N \T2).

Since T1,T2 ∈ E ∗(v∗), the above argument can be independently done for any
dually inessential T ∈N \E ∗(v∗). The claims for the special least cores follow
from the fact that their respective weight functions are monotone nondecreasing.

As the following example demonstrates, balancedness of the game in Theo-
rem 2 is needed for both the standard least core LC and the per-capita least core
LCpc.

Example 2. Consider the dual game v∗ of the 4-player nonbalanced game v in
Example 1: v∗(N) = v∗(14) = v∗(24) = v∗(123) = v∗(124) = v∗(134) = v∗(234) =
18, v∗(4) = v∗(34) = 12, v∗(12) = 6, and v∗(R) = 0 for all other coalitions R∈N .

In the dual description (10) for the standard least core, the minimum uniformly
guaranteed transformed dual surplus is β 1(v∗) = 2, and the set of optimal solu-
tions is the singleton LC∗(v∗) = {x = (2,2,0,14)}, that is, of course, the same as
LC(v) in Example 1. We can also check it directly by the second characterization
in Proposition 1. At allocation x, the family of coalitions with largest transformed
dual surplus (= 2) is T 1(x) = {1,2,4,13,23,34} that is the union of the parti-
tions {1,2,34}, {1,4,23}, and {2,4,13}, so x ∈ LC∗(v∗) indeed. The uniqueness
comes from the ”full rank nature” of T 1(x). Notice that T 1(x) consists of the
complements of the coalitions in S 1(x) in Example 1 and β 1(v∗) =−α1(v).

On the other hand, if we take into account only the dually essential coalitions
E ∗(v∗) = {1,2,3,4} in (10), we get another minimum uniformly guaranteed trans-
formed dual surplus level β 1(E ∗(v∗),v∗)= 3

2 , and another (singleton) optimal solu-
tion set LC∗(E ∗(v∗),v∗) = {s = (3

2 ,
3
2 ,

3
2 ,

27
2 )}. At this allocation, T 1(E ∗(v∗),s) =

{1,2,3,4} that is itself a partition of ”full rank”, thus by Proposition 1, we get that
s ∈ LC∗(E ∗(v∗),v∗), and s is the unique such allocation.

In the dual description (10) for the per-capita least core, the minimum uni-
formly guaranteed transformed dual surplus is β 1

pc(v
∗) = 3

4 , and the set of optimal
solutions is the singleton LC∗pc(v

∗) = {z = (9
4 ,

9
4 ,−

3
4 ,

57
4 )}, that is, of course, the

same as LCpc(v) in Example 1. We can also confirm this by the second characteri-
zation in Proposition 1. Indeed, at allocation z, the family of coalitions with largest
transformed dual per-capita surplus (= 3

4 ) is T 1
pc(z) = {1,2,4,13,23,34,124} that

is the union of the partitions {1,2,34}, {1,4,23}, {2,4,13}, and the (minimal) bal-
anced collection {13,23,34,124}, so t ∈ LC∗pc(v

∗) indeed. The uniqueness comes
again from the ”full rank nature” of T 1

pc(z). Notice also here that T 1
pc(z) consists of

the complements of the coalitions in S 1
pc(z) in Example 1 and β 1

pc(v
∗) =−α1

pc(v).

11



On the other hand, since only the single-player coalitions are dually essen-
tial and gpc(k, .,v∗) =

f (k,.,v∗)
3 = 1

3 g(k, .,v∗) for each k ∈ N, the E ∗(v∗)-restricted
optimization in the per-capita case gives the same set of optimal solutions as in
the standard case. Thus, LC∗pc(E

∗(v∗),v∗) = {s = (3
2 ,

3
2 ,

3
2 ,

27
2 )}. Only the opti-

mum value is scaled β 1
pc(E

∗(v∗),v∗) = 1
2 = 1

3 β 1(E ∗(v∗),v∗). At this allocation,
T 1

pc(E
∗(v∗),s) = {1,2,3,4}, a ”full rank” partition itself, so by Proposition 1,

s ∈ LC∗pc(E
∗(v∗),v∗), and s is the unique such allocation. �

4 Weighted nucleoli

The (pre)nucleolus (Schmeidler, 1969) is a nonempty set of (pre)imputations that
consists of a single element, called the (pre)nucleolus allocation. The following
alternative definition (Maschler, Peleg, Shapley, 1979) will serve us better here.

For game (N,v) and weight function q, the q-weighted prenucleolus Nuq(v)
(q-prenucleolus for short) is defined as the outcome of the following procedure:

Let X0 := Ef(v) and Σ0 := N ,∆0 := {N}.
For r = 1, . . . ,ρ define recursively

αr
q:= maxx∈X r−1 minS∈Σr−1 fq(S,x,v),

X r:= {x ∈ X r−1 : minS∈Σr−1 fq(S,x,v) = αr
q},

∆r := {S ∈ Σr−1 : maxx∈X r fq(S,x,v) = αr
q},

Σr := Σr−1 \∆r, ∆r := ∆r−1∪∆r

where ρ is the first value of r for which Σr = /0.

(13)

The final set Xρ is the q-prenucleolus Nuq(v) of game v. We refer to the unique
vector ηq in Xρ as the q-prenucleolus-allocation.

By straightforward adjustments of the arguments given by Maschler, Peleg, and
Shapley (1979) one can easily see that

• ρ is well defined and finite;

• α1
q (v) = α1

q < α2
q < .. . < α

ρ
q are well defined;

• LCq(v) = X1 ⊇ X2 ⊇ . . .⊇ Xρ are nonempty polytopes;

• ∆1∪∆2∪ . . .∪∆ρ forms a partition of N ,

• if S ∈ ∆k then v(S)+q(S)αk
q = ηq(S),

where α1
q (v) and LCq(v) are defined in (6). Notice the difference between α1

q (v),
a characteristic of the game, and α1

q , a number determined by the algorithm (13).

12



We will also consider certain restricted versions, but only to a nonempty family
of coalitions M ⊆N that is “rich enough” so that all above statements will hold
true also in the restricted cases.

We now identify families of redundant coalitions for weighted prenucleoli. The
following theorem is a slight generalization of Huberman’s (1980) theorem on the
standard (pre)nucleolus that is fundamental for the efficient computability of the
(pre)nucleolus in various types of balanced games with polynomially many essen-
tial coalitions, as it is the case e.g. in assignment games (Solymosi, Raghavan,
1994).

Huberman (1980) proves that

• in a balanced game, all inessential coalitions are redundant for the nucleo-
lus.

Recall that for balanced games the prenucleolus is the same as the nucleolus.

Theorem 3. In a balanced game v, all inessential coalitions are redundant for
Nuq(v) with a monotone nonincreasing weight function q. In particular, for the
standard prenucleolus Nu(v) = Nu(E (v),v).

Proof. Let S ∈ N \ E (v) be inessential in game v, because of the partition S =
S1∪S2 with S1,S2 ∈ E (v) and v(S)≤ v(S1)+v(S2). For simplicity of notation, we
assume (without loss of generality) that the weakly majorizing partition consists
only of k = 2 subcoalitions.

We prove that in all iterations r = 1, . . . ,ρ of algorithm (13) the (inequality
or equality) constraint related to S is redundant, because it is implied by the con-
straints related to S1 and S2.

Since iteration r = 1 determines α1
q (v) and the q-weighted least core, the re-

dundancy of inequalities related to inessential coalitions in a balanced game was
shown in Theorem 1.1 using (11) even under the weaker assumption of subaddi-
tivity on the weight function. Observe that the same argument proves our claim in
any other iteration r > 1 in which all subcoalitions in the weakly majorizing essen-
tial partition are still unsettled (i.e. Si ∈ Σr−1 for all i = 1, . . . ,k), hence all related
constraints are inequalities like in (11).

Suppose now that at the beginning of iteration r > 1 coalition S is still not
settled (i.e. S ∈ Σr−1), but there are both settled and unsettled subcoalitions in the
weakly majorizing essential partition. For simplicity, let S1 ∈ ∆r−1 be settled, and
S2 ∈ Σr−1 be still unsettled. If S1 got settled at the end of iteration j ≤ r− 1, i.e.
S1 ∈ ∆ j, then the related constraints in the optimization problem of iteration r are

v(S1) + q(S1)α
j

q = x(S1)

v(S2) + q(S2)α
j

q + q(S2)(α−α
j

q)≤ x(S2)

v(S) + q(S)α j
q + q(S)(α−α

j
q) ≤ x(S)

(14)
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By the above assumption, v(S) ≤ v(S1)+ v(S2), so the sum of the first two con-
straints implies the third one, because (i) in iteration r variable α to be maximized
satisfies α ≥ αr−1

q ≥ α
j

q ; (ii) for a balanced game we have α
j

q ≥ α1
q ≥ 0; and (iii)

in case of a monotone nonincreasing weight function, q(S)≤min{q(S1),q(S2)} ≤
q(S1)+q(S2).

Finally, suppose that at the end of some iteration r ≥ 1 coalition S becomes
settled (i.e. S ∈ ∆r). This is equivalent to saying that all subcoalitions in the weakly
majorizing essential partition have become settled by the end of that iteration. For
simplicity, let S2 ∈ ∆r be the last one to become settled. Then all related constraints
become equalities in (14), the redundancy of the last constraint, however, follows
in the same way, for all subsequent iterations.

In all three cases the constraints related to S1 and S2 imply the constraint related
to S, hence algorithm (13) yields the same outcomes even if we discard S from all
considerations. Since S1,S2 ∈ E (v), the above arguments can be independently
repeated for any inessential S ∈N \E (v), and the theorem follows.

The constant q(S) = 1 for all S ∈N weight function is monotone nonincreas-
ing, so we get Huberman’s (1980) theorem on the redundancy of inessential coali-
tions for the standard (pre)nucleolus in balanced games as a corollary.

For completeness, we present (without proof) a characterization of weighted
prenucleoli in terms of balanced collections. It is a slight generalization of the
characterization given by Wallmeier (1984) for q-prenucleoli with monotone non-
decreasing and symmetric (i.e. q(S) = q(|S|) for all S ∈N ) weight function, that,
in turn is a straightforward generalization of Kohhlberg’s (1971) criterion for the
standard prenucleolus. Streamlined versions of Kohlberg’s (1971) characterization
are given in (Groote Schaarsberg et al., 2012) and (Nguyen, 2016) for the stan-
dard (pre)nucleolus, and in (Huijink et al., 2015) for the per-capita (pre)nucleolus.
Similar characterizations in more general and abstract settings that accommodate
the weighted versions discussed here can be found in (Maschler et al., 1992) and
(Potters and Tijs, 1992).

Proposition 2. An efficient payoff allocation x belongs to the q-weighted prenucle-
olus of game v if and only if the family of nontrivial coalitions whose q-surplus at
x is at most t is a balanced (or an empty) collection for any t ∈ R.

The following example demonstrates that Huberman’s (1980) redundancy re-
sult cannot be applied for the per-capita (pre)nucleolus, we can not only use essen-
tial coalitions, not even in a balanced game (in which case the per-capita prenu-
cleolus coincides with the per-capita nucleolus). This could partly explain why
there are much fewer special-purpose algorithms proposed in the literature for the
per-capita (pre)nucleolus than for the standard (pre)nucleolus. A recent exception
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is the algorithm by Huijink et al. (2015) for the per-capita nucleolus of bankruptcy
games.

Example 3. Consider the 4-player balanced superadditive game: v(N) = 12,
v(12) = v(34) = v(123) = v(124) = v(134) = v(234) = 6, v(14) = 4, and v(R) = 0
for all other coalitions R∈N . Let the weight function be q(S) = |S| for all S∈N .

The first iteration of algorithm (13) gives α1
q = 0, so X1 =LCq(v)=Co(v), and

∆1 = {12,34}. The second iteration gives α2
q = 1 and ∆2 = {14,123,124,134,234}.

The third iteration gives α3
q = 3 and ∆3 = {1,2,3,4,13,23,24}, and the algorithm

stops. Thus, ρ = 3. The only allocation in X3 (in fact, already in X2) is (3,3,3,3),
it is the per-capita prenucleolus. It is easily checked also by Proposition 2. Indeed,
S 1 = ∆1, S 2 = ∆1∪∆2, S 3 = ∆1∪∆2∪∆3 are all balanced families.

Let us now consider only the essential coalitions E (v) = {1,2,3,4,12,14,34}
and initiate algorithm (13) with Σ0 := E (v) instead of N . Then the first itera-
tion gives again α1

q = 0, so X1 = LCq(E (v),v) = Co(E (v),v) = Co(v), and ∆1 =

{12,34}. On the other hand, the second iteration gives α2
q = 2 and ∆2 = {2,3,14}.

The third iteration gives α3
q = 4 and ∆3 = {1,4}, and the algorithm stops. Thus,

ρ = 3. The only allocation in X3 (in fact, already in X2) is (4,2,2,4), it is the
per-capita prenucleolus of the E (v)-restricted game. It is easily checked also
by the restricted version of Proposition 2. Indeed, S 1 = ∆1, S 2 = ∆1 ∪ ∆2,
S 3 = ∆1∪∆2∪∆3 are all balanced families of essential coalitions. �

Analogously to how we obtained the dual description (10) of the q-weighted
least core from its definition (6), given a game (N,v) and weight function q, we can
alternatively get the q-weighted prenucleolus Nuq(v) from the dual game (N,v∗)
as the outcome of the following procedure, that we call the dual description of the
q-prenucleolus:

Let Y 0 := Ef(v∗) and Σ̂0 := N , ∆̂0 := {N}.
For r = 1, . . . , ρ̂ define recursively

β r
q := minx∈Y r−1 maxT∈Σ̂r−1 gq(T,x,v∗),

Y r:= {x ∈ Y r−1 : maxT∈Σ̂r−1 gq(T,x,v∗) = β r
q},

∆̂r := {T ∈ Σ̂r−1 : minx∈Y r gq(T,x,v∗) = β r
q},

Σ̂r := Σ̂r−1 \ ∆̂r, ∆̂r := ∆̂r−1∪ ∆̂r

where ρ̂ is the first value of r for which Σ̂r = /0.

(15)

Let Nu∗q(v∗) denote the last payoff set Y ρ̂ determined by algorithm (15) performed
on the dual game (N,v∗) and η̂q the single element of Nu∗q(v∗).
It is easily seen that
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• ρ̂ is well defined and finite;

• β 1
q (v
∗) = β 1

q > β 2
q > .. . > β

ρ̂
q are well defined;

• LC∗q(v∗) = Y 1 ⊇ Y 2 ⊇ . . .⊇ Y ρ are nonempty polytopes;

• ∆̂1∪ ∆̂2∪ . . .∪ ∆̂ρ forms a partition of N ;

• if T ∈ ∆̂k then η̂q(T )−q(N \T )β k
q = v∗(T ),

where β 1
q (v
∗) and LC∗q(v∗) are defined in (10).

The inherent relations between algorithm (13) performed on v and algorithm
(15) performed on v∗ are detailed as follows:

• ρ̂ = ρ;

• for all r = 1, . . . , ρ̂ = ρ we have β r
q =−αr

q;

• for all r = 1, . . . , ρ̂ = ρ we have Y r = X r; in particular, LC∗q(v∗) = Y 1 =

X1 = LCq(v) and Y ρ̂ = Xρ consists of the unique q-prenucleolus-allocation
η̂q = ηq;

• for each r = 1, . . . , ρ̂ = ρ , the family ∆̂r consists of the complements of the
coalitions in ∆r.

We now identify a family of coalitions which are redundant in the dual descrip-
tion of weighted prenucleoli of a balanced game.

Theorem 4. In a balanced game v, all dually inessential coalitions are redundant
for Nuq(v) with a monotone nondecreasing weight function q. In particular, for
the standard prenucleolus Nu(v) = Nu∗(E ∗(v∗),v∗) and for the per-capita prenu-
cleolus Nupc(v) = Nu∗pc(E

∗(v∗),v∗).

Proof. Let T ∈N \E ∗(v∗) be dually inessential in game v, because of the partition
T = T1∪T2 with T1,T2 ∈ E ∗(v∗) and v∗(T1)+v∗(T2)≤ v∗(T ). For simplicity of no-
tation, we assume (without loss of generality) that the weakly minorizing partition
consists only of k = 2 subcoalitions.

We prove that in all iterations r = 1, . . . ,ρ of algorithm (15) the (inequality
or equality) constraint related to T is redundant, because it is implied by the con-
straints related to T1 and T2.

Since iteration r = 1 determines β 1
q (v
∗) and the q-weighted least core, the re-

dundancy of inequalities related to dually inessential coalitions in a balanced game
was shown in Theorem 2. Observe that the same argument proves our claim in
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any other iteration r > 1 in which all subcoalitions in the weakly minorizing dually
essential partition are still unsettled (i.e. Ti ∈ Σ̂r−1 for all i = 1, . . . ,k), hence all
related constraints are inequalities like in (12).

Suppose now that at the beginning of iteration r > 1 coalition T is still not
settled (i.e. T ∈ Σ̂r−1), but there are both settled and unsettled subcoalitions in
the weakly minorizing dually essential partition. For simplicity, let T1 ∈ ∆̂r−1 be
settled, and T2 ∈ Σ̂r−1 be still unsettled. If T1 became settled at the end of iteration
j ≤ r−1, i.e. T1 ∈ ∆̂ j, then the related constraints in the optimization problem of
iteration r are the following:

x(T1) = v∗(T1) + q(N \T1)β
j

q

x(T2)≤ v∗(T2) + q(N \T2)β
j

q + q(N \T2)(β −β
j

q )

x(T ) ≤ v∗(T ) + q(N \T )β j
q + q(N \T )(β −β

j
q )

(16)

By the above assumption, v∗(T1)+v∗(T2)≤ v∗(T ), so the sum of the first two con-
straints implies the third one, because (i) in iteration r variable β to be minimized
satisfies β ≤ β r−1

q ≤ β
j

q ; (ii) for a balanced game we have β
j

q ≤ β 1
q ≤ 0; and (iii) in

case of a monotone nondecreasing weight function, (N \T1)∩ (N \T2) = N \T 6= /0
implies q(N \T )≤min{q(N \T1),q(N \T2)} ≤ q(N \T1)+q(N \T2).

Finally, suppose that at the end of some iteration r ≥ 1 coalition T becomes
settled (i.e. T ∈ ∆̂r). This is equivalent to saying that all subcoalitions in the
weakly minorizing dually essential partition have become settled by the end of that
iteration. For simplicity, let T2 ∈ ∆̂r be the last one to become settled. Then all
related constraints become equalities in (16), the redundancy of the last constraint,
however, follows in the same way, for all subsequent iterations.

In all three cases the constraints related to T1 and T2 imply the constraint related
to T , hence algorithm (15) yields the same outcomes even if we discard T from all
considerations. Since T1,T2 ∈ E ∗(v∗), the above arguments can be independently
repeated for any dually inessential T ∈N \E ∗(v∗), and the theorem follows.

The claims for the particular (pre)nucleoli follow immediately from the mono-
tone nondecreasing nature of the respective weight functions.

Note that since the constant q(S) = 1 for all S ∈N weight function is mono-
tone nondecreasing, we get the dual counterpart of Huberman’s (1980) theorem
that states the redundancy of dually inessential coalitions for the standard (pre)nuc-
leolus in balanced games. This is the implicit basis of various known efficient
nucleolus algorithms, e.g. (Megiddo, 1978), (Granot et al., 1996), (Brânzei et al.,
2005), (van den Brink et al., 2011).

We emphasize that in Theorem 4, balancedness of the game is a necessary
condition. To make the point, let us consider the nonbalanced dual game in Ex-
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ample 2: in that game the (standard / per-capita) least core consists of a unique
allocation that is precisely the (standard / per-capita) prenucleolus.

For completeness, we present a Kohlberg-type characterization of weighted
prenucleoli in terms of the dual game. It is the dual counterpart of the characteriza-
tion in Proposition 2, and the analogue of the second characterization of weighted
least core allocations in Proposition 1.

Proposition 3. An efficient payoff allocation x belongs to the q-weighted prenucle-
olus of game v if and only if the family of nontrivial coalitions whose transformed
dual q-surplus gq(.,x,v∗) at x is at least t is a balanced (or an empty) collection
for any t ∈ R.

We omit the proof, since the standard LP duality arguments that prove Propo-
sition 2 can be straightforwardly adjusted to the dual description (15).

We use the balanced game in Example 3 to illustrate how Theorem 4 can help
in calculating, for example, the per-capita (pre)nucleolus. Recall that in that game
we could not use only the essential coalitions, discarding all inessential coalitions
lead to a different allocation. Now we demonstrate that we, however, can omit all
coalitions that are inessential in the dual game.

Example 4. Consider the dual game of the 4-player balanced superadditive game
in Example 3: v∗(N)= v∗(13)= v∗(14)= v∗(24)= v∗(123)= v∗(124)= v∗(134)=
v∗(234) = 12, v∗(23) = 8, and v∗(R) = 6 for all other coalitions R ∈N . Let the
weight function be q(S) = |S| for all S ∈N .

The first iteration of algorithm (15) gives β 1
q = 0, so X1 = LC∗q(v∗) = Co(v),

and ∆̂1 = {12,34}. The second iteration gives β 2
q = −1 and ∆̂2 = {23,1,2,3,4}.

The third iteration gives β 3
q = −3 and ∆̂3 = {13,14,24,123,124,134,234}, and

the algorithm stops. Thus, ρ = 3. The only allocation in X3 (in fact, already in X2)
is (3,3,3,3), it is the per-capita prenucleolus (cf. Example 3). It is easily checked
also by Proposition 3. Indeed, T 1 = ∆̂1, T 2 = ∆̂1 ∪ ∆̂2, T 3 = ∆̂1 ∪ ∆̂2 ∪ ∆̂3 are
all balanced families. Notice that ∆̂1, ∆̂2, and ∆̂3 consists of, respectively, the
complements of ∆1, ∆2, and ∆3, computed in Example 3. Furthermore, β r

q =−αr
q

for r = 1,2,3.
Let us now take only the dually essential coalitions and initiate algorithm (15)

with Σ̂0 := E ∗(v∗) = {1,2,3,4,12,23,34} instead of N . Then the first iteration
gives again β 1

q = 0, so X1 = LC∗q(E ∗(v∗),v∗) = Co(E ∗(v∗),v∗) = Co(v), and ∆̂1 =

{12,34}. The second iteration gives β 2
q = −1 and ∆̂2 = {1,2,3,4,23}, and the

algorithm stops. Thus, now ρ = 2. The only allocation in X2 is (3,3,3,3), it is the
per-capita prenucleolus of the E ∗(v∗)-restricted game, that is the same as the above
output of algorithm (15) run with the unrestricted dual input, that, in turn, coincides
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with the per-capita prenucleolus of the game v (cf. Example 3). It is easily checked
also by the restricted version of Proposition 3. Indeed, T 1 = ∆̂1, T 2 = ∆̂1∪ ∆̂2 are
both balanced families, consisting only of dually essential coalitions. �

5 Final remarks

We considered linearly weighted versions of the least core and the (pre)nucleolus
and identified characterization sets for these solutions, i.e. families of coalitions
that are sufficient to determine the given solution. We demonstrated that almost all
of our results require the game to be balanced. We extended some known related
results and established their counterparts by using the dual game.

As corollaries for the best-known special cases, we found that in a balanced
game (N,v), the family of essential coalitions E (v) (whose value cannot be weakly
majorized by a partition of N in the game v) is a characterization set for the standard
least core, for the per-capita least core, and for the standard (pre)nucleolus (Theo-
rems 1 and 3), but not for the per-capita (pre)nucleolus (Example 3). By analogous
arguments, we showed that if the dual game (N,v∗) is anti-balanced, the family of
dually essential coalitions E ∗(v∗) (whose value cannot be weakly minorized by a
partition of N in the dual game v∗) is a characterization set for the standard least
core, for the per-capita least core, for the standard (pre)nucleolus, and also for the
per-capita (pre)nucleolus (Theorems 2 and 4).

5.1 Refinements

Based on the above summary of our results the following questions arise naturally:
when, if at all, does the intersection of the families of essential and dually essential
coalitions forms a characterization set for the standard least core, for the per-
capita least core, and for the standard (pre)nucleolus?

First of all, let us specify what it means to combine the primal and dual reduced
descriptions, since the first one is in terms of v but the second one is in terms of the
dual game v∗.

Suppose coalition S⊆ N is dually inessential because of the partition S = S1∪
. . .∪Sk with k ≥ 2 weakly minorizes its value in the dual game, i.e.

v∗(S1)+ . . .+ v∗(Sk)≤ v∗(S). (17)

Rewritten in terms of v, inequality (17) means

v(N \S1)+ . . .+ v(N \Sk)− (k−1)v(N)≥ v(N \S). (18)
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Notice that coalitions N \ S1, . . . ,N \ Sk are all supersets of N \ S, but each player
in S belongs to exactly k− 1 of them. We call such a family of coalitions an
antipartition of N \ S, since it consists of the complements of the coalition in a
partition of S. We say that the antipartition is weakly majorizing if inequality (18)
holds. Summarizing, if coalition S is dually inessential then its complement N \ S
has a weakly majorizing antipartition.

For the antipartition of N \S in (18) we clearly have

x(N \S1)+ . . .+ x(N \Sk)− (k−1)x(N) = x(N \S) for all x ∈ RN . (19)

Subtracting (18) from (19) gives

f (N \S1,x,v)+ . . .+ f (N \Sk,x,v)≤ f (N \S,x,v) for all x ∈ Ef(v). (20)

Recall that if S is inessential because it has a weakly majorizing partition

v(T1)+ . . .+ v(Tj)≥ v(S) (21)

for the surpluses we also have

f (T1,x,v)+ . . .+ f (Tj,x,v)≤ f (S,x,v) for all x ∈ Ef(v), (22)

and Huberman (1980) proved that in a balanced game all such coalitions can be ig-
nored when we compute the standard (pre)nucleolus, and since computing the least
core is the first step in the nucleolus procedure, also when we compute the standard
least core. The structural identity of (20) and (22) explains why the complements
of all dually inessential coalitions can be ignored when we compute the standard
(pre)nucleolus and the standard least core from values of the balanced game v.

Now we can turn to our highlighted question on the possibility of combining
the two reduction possibilities. We say that the core of balanced game (N,v) is full-
dimensional if dimCo(v) = |N|−1, or equivalently, if N is the only tight coalition
over the entire core. Solymosi and Sziklai (2016) proved (in terminology of this
paper) that

• if the core of balanced game (N,v) is full-dimensional then all inessential
coalitions and the complements of all dually inessential coalitions can be
ignored when we compute the standard (pre)nucleolus and the standard least
core from the values of v.

For a better understanding of the key issues, we supplement that paper by the fol-
lowing example. We demonstrate that without full-dimensionality of the core we
might need to keep some of the aforementioned (individually redundant) coalitions.
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Example 5. Consider the 4-player balanced superadditive game: v(N)= 8, v(1)=
v(2) = v(3) = v(4) = v(24) = 0, v(13) = 2 and v(R) = 4 for all other coalitions R∈
N . The dual game: v∗(N) = v∗(234) = v∗(134) = v∗(124) = v∗(123) = v∗(13) =
8, v∗(24) = 6 and v∗(R) = 4 for all other coalitions R ∈N .

Notice that the core is not full-dimensional. In fact, dim(Co(v)) = 1 since
v(12) + v(34) = v(N) as well as v(14) + v(23) = v(N), thus x(12) = x(34) =
x(14) = x(23) = 4 over the entire core.

It is easily checked that Co(v) = LC(v) = {(y,4− y,y,4− y) : 1≤ y≤ 4} and
(2,2,2,2) is the standard (pre)nucleolus allocation. We get the same outcomes
if we take into account only the essential coalitions E (v) = {1,2,3,4,12,13,14,
23, 34} in algorithm (13) with the standard weight function q(S) = 1 for all S ∈
N . Alternatively, we can run this same standard algorithm (13) only with the
complements F (v) = {234,134,124,123,34,23,14,13,12} of the dually essential
coalitions E ∗(v∗) = {1,2,3,4,12,14,23,24,34}, listed respectively.

The intersection E (v)∩F (v) = {12,13,14,23,34} of these two characteriza-
tion sets, however, is not sufficient to determine the correct solutions. Indeed, if
we run the standard algorithm (13) with Σ0 = E (v)∩F (v) we get α1 = 0, but
the set of optimal solutions X1 = {(y,4− y,y,4− y) : 1 ≤ y < ∞} is a halfline.
Since we dropped all 3-player coalitions and coalition 24 as inessentials and also
dropped all 1-player coalitions as complements of dually inessential coalitions, no
constraint is left to guarantee nonnegativity for x2 and x4. Thus, the intersection
E (v)∩F (v) is not a characterization set for the standard least core and for the
standard (pre)nucleolus.

Let us illustrate why this happens and why this can happen only when the core
is not full-dimensional, see (Solymosi and Sziklai, 2016) for a general proof. We
dropped, for example, coalition 124 because it is weakly majorized by its parti-
tion v(12)+ v(4) ≥ v(124). But we also dropped coalition 4 because it is weakly
majorized by its antipartition v(124)+ v(34)− v(N) ≥ v(4). Since no other par-
tition weakly majorizes coalition 124 and no other antipartition weakly majorizes
coalition 4, we cannot leave them both out at the same time. Each one is redun-
dant in the system because the other one is present. Notice that by combining the
two weak majorizations we get v(4)+ v(12)+ v(34)− v(N) ≥ v(4), that implies
v(12)+ v(34)≥ v(N). Thus, the grand coalition is also weakly majorized, so N is
not the only tight coalition over the entire core. �

Now let us see our combined reducibility question for the per-capita least core.
Example 5 gives a negative answer here too, at least in case the core of the balanced
game is not full-dimensional. Indeed, recall from section 3 that for any weight
function q, LCq(v) = Co(v) if and only if α1

q (v) = 0, and observe that this holds
whenever the core is not empty and not full-dimensional. On the other hand, one
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can show that

• if the core of balanced game v is full-dimensional then the intersection of the
family E (v) of essential coalitions and the family F (v) of the complements
of the dually essential coalitions is a characterization set for the per-capita
least core, or more generally, for any weighted least core with an subadditive
and monotone nondecreasing weight function.

We omit the details, but underline that the key for being able to combine the proofs
of Theorem 1 and Theorem 2 (rewritten in terms of v) is also what Solymosi and
Sziklai (2016) proved: if the core of the balanced game v is full-dimensional then
for every inessential coalition there is a weakly majorizing partition in E (v)∩F (v)
and for the complement of every dually inessential coalition there is a weakly ma-
jorizing antipartition in E (v)∩F (v).

We conclude this subsection by highlighting from a different perspective what
is the crucial difference between the standard and the per-capita solutions, why the
analogous arguments work for the per-capita least core but fail to carry further for
the per-capita (pre)nucleolus.

Take the weakly majorizing antipartition of coalition N \S in (18). If the weight
function q is monotone nondecreasing, from (20) we get

f (N \S1,x,v)
q(N \S1)

+ . . .+
f (N \Sk,x,v)

q(N \Sk)
≤ f (N \S,x,v)

q(N \S)
for all x ∈Co(v), (23)

because all members of the antipartition are supersets of N \S and all q-surpluses
are nonnegative in the core. This implies that all the terms on the left side are less
than or equal to the q-surplus of N \S throughout algorithm (13), therefore N \S is
redundant even for the q-(pre)nucleolus.

In comparison, take the weakly majorizing partition of S in (21). If the weight
function q is subadditive, from (22) we can only derive that

f (T1,x,v)
q(T1)

≤
f (T1,x,v)+ . . .+ f (Tj,x,v)

q(T1)+ . . .+q(Tj)
≤ f (S,x,v)

q(S)
for all x∈Co(v), (24)

if, at x ∈ Co(v), coalition T1 has the smallest q-surplus among the members of the
partition. This inequality, however, might not hold for all q-surpluses in the parti-
tion. Consequently, although the inessential coalition S can be ignored in the first
iteration of algorithm (13), but it could become important in later iterations. This
explains, in particular, why inessential coalitions might be left out in the compu-
tation of the per-capita least core, but might not be dropped in the computation of
the per-capita (pre)nucleolus.
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5.2 Cost games

Naturally all our results carry over for cost games and their dual games, only the
straightforward adjustments required by “the smaller, the better” nature of the out-
comes must be made. To avoid duplications in terminology, we consider cost game
c = v∗ as the dual game of its dual game v = c∗ that is a usual profit game we
worked with so far. Hence we are interested in the anti-solutions of cost games.

For illustration, we use the 5-player cost game set up by Suzuki and Nakayama
(1976) to analyze the cost allocation problem related to a cooperative water devel-
opment project in Japan. Interested in the (anti-)nucleolus allocation, the authors
found that only one iteration in the ususal sequential LP optimization procedure
was needed (already the least anti-core turned out to be a singleton), and concluded
that the (anti-)nucleolus was fully determined by the family of the (n− 1 = 4)-
player coalitions. This real life example also allows us to demonstrate that work-
ing with the dual game explicitly and applying the simplification possibilities in
the dual descriptions might have some bite. Specifically, we will see that we can
arrive at that same result “almost by inspection”, moreover, from the gained “struc-
tural insight” we can readily conclude that in this cost game the per-capita (anti-
)nucleolus coincides with the standard (anti-)nucleolus.

The 5-player cost game c analyzed by Suzuki and Nakayama (1976) and its
dual game c∗ are as follows (for ease of presentation values are multiplied by 10):

c∗(S) S c(S)
−1164 1 . . . . 0
−1167 . 2 . . . 0

3670 . . 3 . . 4897
5041 . . . 4 . 7476
4425 . . . . 5 7498
−2464 1 2 . . . 0

2387 1 . 3 . . 4400
3572 1 . . 4 . 7005
3597 1 . . . 5 6940
2387 . 2 3 . . 4864
3464 . 2 . 4 . 5463
3099 . 2 . . 5 5122
8177 . . 3 4 . 11065
7898 . . 3 . 5 11083
8679 . . . 4 5 12090

c∗(S) S c(S)
989 1 2 3 . . 4400

1996 1 2 . 4 . 5181
2014 1 2 . . 5 4902
7957 1 . 3 4 . 9980
7616 1 . 3 . 5 9615
8215 1 . . 4 5 10692
6139 . 2 3 4 . 9482
6074 . 2 3 . 5 9507
8679 . 2 . 4 5 10692

13079 . . 3 4 5 15543
5581 1 2 3 4 . 8654
5603 1 2 3 . 5 8038
8182 1 2 . 4 5 9409

13079 1 . 3 4 5 14246
13079 . 2 3 4 5 14243
13079 1 2 3 4 5 13079

One needs only a hand calculator (and some patience) to check that c is subadditive.
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It turns out that c is, in fact, strictly subadditive except at coalition 123, so all
coalitions but 123 are anti-essential in this cost game. Since there is only negligible
redundancy with respect to partitions, we cannot utilize the primary restriction
possibilities here. Even deciding whether c is anti-balanced or not would require
some computer help.

It would be also difficult and tedious to detect in the cost game c itself the other
kind of exploitable redundancies and identify coalitions that are weakly minorized
by an antipartition. But we can easily calculate the dual cost game c∗ and then
check again “with paper and pencil” at which coalitions it is strictly superadditive.

In our case it turns out that there are only a couple of essential coalitions in
c∗: the single-player coalitions (as always) and coalitions 15, 134, 135, 245, 1245,
1345, 2345. (Interestingly, every other coalition is found to be strictly majorized by
a partition that consists only of single-player coalitions and coalition 15, foreshad-
owing the importance of the single-player coalitions also in the solutions.) Thus,
balancedness of c∗ can be decided from the restricted system (below on the left), or
equivalently, from the more transparent 0-normalized system (below on the right):

c∗(S) x(S)
−1164 ≤ x1 . . . .
−1167 ≤ . x2 . . .

3670 ≤ . . x3 . .
5041 ≤ . . . x4 .
4425 ≤ . . . . x5

3597 ≤ x1 . . . x5

7957 ≤ x1 . x3 x4 .
7616 ≤ x1 . x3 . x5
8679 ≤ . x2 . x4 x5

8182 ≤ x1 x2 . x4 x5
13079 ≤ x1 . x3 x4 x5
13079 ≤ . x2 x3 x4 x5

13079 = x1 x2 x3 x4 x5

c∗0(S) x0(S)
0 ≤ x0

1 . . . .
0 ≤ . x0

2 . . .
0 ≤ . . x0

3 . .
0 ≤ . . . x0

4 .
0 ≤ . . . . x0

5
336 ≤ x0

1 . . . x0
5

410 ≤ x0
1 . x0

3 x0
4 .

685 ≤ x0
1 . x0

3 . x0
5

380 ≤ . x0
2 . x0

4 x0
5

1047 ≤ x0
1 x0

2 . x0
4 x0

5
1107 ≤ x0

1 . x0
3 x0

4 x0
5

1110 ≤ . x0
2 x0

3 x0
4 x0

5
2274 = x0

1 x0
2 x0

3 x0
4 x0

5

Since the 0-normalized essential coalitional values seem to strongly depend on the
number of players and c∗0(N) is quite large compared to the other values, the equal
split allocation η0

i = 2274
5 = 454.8 for i = 1, . . . ,5 is a natural candidate for a core

element. The nonnegativity of all surpluses at η0 is more than clear, so η0 is indeed
in the core of c∗0.

As c∗0 turned out to be balanced, we can also determine its least core and nucleo-
lus from the restricted system. Since the single-player coalitions are easily found to
have the minimum surplus at η0 and they form a “full rank” partition of N, we con-
clude that the least core of c∗0 is a singleton and η0 is the nucleolus allocation. Scale
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retransformation ηi = c∗(i)+η0
i for i = 1, . . . ,5 gives that the nucleolus allocation

in c∗ (the anti-nucleolus allocation in c) is η = (−709.2,−712.2, 4124.8, 5495.8,
4879.8), precisely (10 times of) what Suzuki and Nakayama (1976) computed.

Observe that above we just solved (based on Theorem 2 from a restricted set
of constraints) the following optimization problem (the counterpart of (8)) for our
anti-balanced cost game c:

β →max
x(N) = c∗(N)
x(T )−q(N \T )β ≥ c∗(T ) ∀T ∈N

(25)

with the standard weight function q(T ) = 1 for all T ∈ N , and found that the
single-player coalitions determine the positive optimum value and the (unique) op-
timal solution. Since for any monotone decreasing weight function S ⊂ T implies
q(N \S)≥ q(N \T ), the importance of the inequalities related to the smaller coali-
tions could only increase among the constraints. Thus, in such cases the payoff vec-
tor in the optimal solution to (25) must be the same as in the standard case. In par-
ticular, we get that in the 5-player cost game of Suzuki and Nakayama (1976) the
per-capita (anti-)nucleolus allocation is the same as the standard (anti-)nucleolus
allocation.
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