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ABSTRACT 

In a liability problem, the asset value of an insolvent firm must be distributed among 

the creditors and the firm itself, when the firm has some freedom in negotiating with 

the creditors. We model the negotiations using cooperative game theory and analyze 

the Shapley value to resolve such liability problems. We establish three main 

monotonicity properties of the Shapley value. First, creditors can only benefit from 

the increase in their claims or of the asset value. Second, the firm can only benefit 

from the increase of a claim but can end up with more or with less if the asset value 

increases, depending on the configuration of small and large liabilities. Third, 

creditors with larger claims benefit more from the increase of the asset value. Even 

though liability games are constant-sum games and we show that the Shapley value 

can be calculated directly from a liability problem, we prove that calculating the 

Shapley payoff to the firm is NP-hard. 
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A Shapley-érték a tartozásos játékokban 

CSÓKA PÉTER –ILLÉS FERENC –SOLYMOSI TAMÁS 
 
ÖSSZEFOGLALÓ 
 
Tartozásos probléma esetén a fizetésképtelen vállalat eszközeit el kell osztani a 

hitelezők és a vállalat között, miközben a vállalkozásnak bizonyos szabadsága van a 

hitelezőkkel folytatott tárgyalások során. A tárgyalásokat kooperatív játékokkal 

modellezzük, és elemezzük a Shapley-értéket az ilyen tartozásos problémák 

megoldása érdekében. Belátjuk a Shapley-érték három fő monotonitási tulajdonságát. 

Először is, a hitelezők mindig jobban járnak, ha nő a követelésük vagy az eszközérték. 

Másodszor, a vállalat egy tartozás növekedéséből csak profitálhat, de jobban vagy 

rosszabbul is járhat, ha az eszközérték növekszik, a kis és nagy tartozások 

összetételétől függően. Harmadszor, a nagyobb követelésekkel rendelkező hitelezők 

jobban részesülnek az eszközérték növekedéséből. Annak ellenére, hogy a tartozásos 

játékok konstans összegű játékok, és megmutatjuk, hogy a Shapley-érték közvetlenül 

kiszámolható egy tartozásos probléma adataiból, a kapcsolódó kooperatív játék 

generálása nélkül is, bizonyítjuk, hogy a vállalat Shapley-értékének kiszámítása NP-

nehéz. 
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In a liability problem, the asset value of an insolvent firm must be distributed

among the creditors and the firm itself, when the firm has some freedom in ne-

gotiating with the creditors. We model the negotiations using cooperative game

theory and analyze the Shapley value to resolve such liability problems. We es-

tablish three main monotonicity properties of the Shapley value. First, creditors

can only benefit from the increase in their claims or of the asset value. Second,

the firm can only benefit from the increase of a claim but can end up with more or

with less if the asset value increases, depending on the configuration of small and

large liabilities. Third, creditors with larger claims benefit more from the increase

of the asset value. Even though liability games are constant-sum games and we

show that the Shapley value can be calculated directly from a liability problem,

we prove that calculating the Shapley payoff to the firm is NP-hard.
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1 Introduction

An insolvent firm (country, state, individual, etc.) with some asset value has liabilities

towards a group of creditors. Compared to standard bankruptcy games as studied in the

game-theoretical literature (see O’Neill (1982) for a seminal contribution and Thomson

(2013), and Thomson (2015) for recent surveys) Csóka and Herings (2019) introduced

liability problems, by modeling the firm as an explicit player. A liability problem is

given by the asset value of the firm to be allocated and the claims of the creditors.

Instead of directly using the values given in a liability problem, Csóka and Herings

(2019) defined liability games to indirectly allocate the asset value using a solution

concept from cooperative game theory. The worth of a coalition in a liability game is

defined as follows. Given a coalition and its complement, the firm first makes payments

to the coalition it belongs to, up to the value of the liabilities in the firm’s coalition and

the asset value of the firm, and then (if possible) pays to the complementary coalition.

They remarked that liability games are superadditive: there is no loss of merging disjoint

coalitions. Moreover, they proved that the core of a liability game is empty and analyzed

one of the two most popular solution concepts, the nucleolus (Schmeidler, 1969).

In this paper, we investigate the Shapley value (Shapley, 1953) of liability games.

The numerous applications of the Shapley value include aircraft landing fees (Littlechild

and Owen, 1973; Dubey, 1982), minimal cost spanning trees (Bergantinos and Lorenzo-

Freire, 2008), a combinatorial structure called augmenting system (Bilbao and Ordóñez,

2009), directed graph games (Khmelnitskaya, Selçuk, and Talman, 2016), risk capital

allocation (Balog, Bátyi, Csóka, and Pintér, 2017), and for environmental costs in supply

chains (Ciardiello, Genovese, and Simpson, 2018) among others.

We show that the Shapley value can also be used as an allocation rule, that is, it

allocates the asset value non-negatively among the creditors and the firm in such a way

that no creditor gets more than his liability. We establish lower and upper bounds for

the Shapley payments. Moreover, we show that (i) creditors can only benefit from the

increase in their claims or of the asset value; (ii) the firm can only benefit from the

increase of a claim but can end up with more or with less if the asset value increases,

depending on the configuration of small and large liabilities; (iii) creditors with larger

claims benefit more from the increase of the asset value. In most cases, we even establish

sharp upper bounds for the changes in the payments.

It is easy to check that in liability games, for one or two creditors (that is, for two

or three players), the Shapley value coincides with the nucleolus. However, for three or

more creditors, they give different payoffs in generic examples. Csóka and Herings (2019)

showed that at the nucleolus of a liability game, the firm gets a positive payment, which
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is at most half of the asset value. We show that at the Shapley value, there are cases

when the firm can keep almost the whole asset value. Csóka and Herings (2019) also

showed that at the nucleolus, creditors with higher liabilities receive higher payments,

but they also get higher debt forgiveness (defined as the difference between the liability

and the received payments), a result we also have for the Shapley value. They also

provided conditions under which the nucleolus coincides with a generalized proportional

rule, where the firm gets a positive amount, and the rest is allocated in proportional to

the liabilities.

Csóka and Herings (2019) noted that in a liability game, the worth of a coalition

plus the worth of the complementary coalition is always equal to the asset value, that

is, a liability game is a constant-sum game (Von Neumann and Morgenstern, 1944).

Originally, Von Neumann and Morgenstern (1944) analyzed strategic non-cooperative

games, where a coalition and the complementary coalition play a constant-sum game.

They discussed constant-sum simple games with winning or losing coalitions, where the

worth of any coalition can be either zero or one. A prominent application is (weighted)

majority voting games, where the worth of the grand coalition is one, and if a coalition

is winning, then its complementary coalition is losing. Constant-sum games also play a

role in games modeling Bitcoin mining pools (Lewenberg, Bachrach, Sompolinsky, Zohar,

and Rosenschein, 2015). For a recent generalization to alpha-constant-sum games, see

Wang, van den Brink, Sun, Xu, and Zou (2019). A related new concept is called games of

threats (Kohlberg and Neyman, 2018), where the constant-sum is zero, but the value of

the empty coalition is not always zero. For more details on the value theory of strategic

games, see Cai, Candogan, Daskalakis, and Papadimitriou (2016).

Since constant-sum games are exciting on their own, we first study the Shapley

value for constant-sum games in general. We propose a basis for the linear vector space

of constant-sum games that provides a specialized formula for the Shapley payoff to

a player in a constant-sum game. It turns out that some of those general results are

very handy for liability games. We obtain a simple computational scheme by which the

Shapley value of a liability game is derived directly from the liability problem, that is,

from the asset value and the liabilities.

In general, computing the Shapley value based on its definition is practically im-

possible for large games. Computing the Shapley value in weighted majority games is

#P-complete (Deng and Papadimitriou, 1994) and one has to rely on its estimation. Es-

timation techniques were introduced by Castro, Gómez, and Tejada (2009) and Castro,

Gómez, Molina, and Tejada (2017). However, for special classes of games, the Shapley

value can be calculated in a polynomial manner (Megiddo, 1978; Granot, Kuipers, and
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Chopra, 2002; Castro, Gómez, and Tejada, 2008). We show that in liability games,

calculating the Shapley value of the insolvent firm is NP-hard. Thus even though the

Shapley value can be calculated directly from the liability problem, its application to

large liability problems could become computationally laborious.

The paper is organized as follows. In Section 2, we consider general constant-sum

games. In Section 3, we introduce liability games, show that the Shapley value can be

used as an allocation rule, and provide two examples. In Section 4, we prove various

properties of the Shapley allocation rule. Section 5, we show that calculating the Shapley

value of the firm is NP-hard.

2 The Shapley value of constant-sum games

A transferable utility cooperative game (N, v) is a pair where N is a non-empty, finite

set of players and v : 2N → R is a coalitional function satisfying v(∅) = 0. The number

v(S) is regarded as the worth of the coalition S ⊆ N . We identify the game with its

coalitional function since the player set N is fixed throughout the paper. The game

(N, v) is called 0-normalized if v({i}) = 0 for every i ∈ N ; superadditive if S ∩ T = ∅
implies v(S) + v(T ) ≤ v(S ∪ T ) for every two coalitions S, T ⊆ N . The game (N, v) is

constant-sum if v(S) + v(N \ S) = v(N) for every coalition S ⊆ N .

Given a game (N, v), a payoff allocation x ∈ RN represents the payoffs to the players.

The total payoff to coalition S ⊆ N is denoted by x(S) =
∑

i∈S xi if S 6= ∅ and x(∅) = 0.

In a game v, we say the payoff allocation x is efficient, if x(N) = v(N); individually

rational, if xi = x({i}) ≥ v({i}) for all i ∈ N ; coalitionally rational, if x(S) ≥ v(S) for

all S ⊆ N . The set of preimputations, I∗(v), consists of the efficient payoff vectors, the

set of imputations, I(v), consists of the individually rational preimputations, and the

core, C(v), is the set of coalitionally rational (pre)imputations. We call a game balanced

if its core is non-empty.

We denote the set of all cooperative games on a fixed player set N by GN . It is

well-known that GN is a linear vector space of dimension 2n− 1 where n = |N |. A value

on GN is a map f : GN → RN , which assigns to every game v on N a vector f(v) with

components fi(v) for all i ∈ N . We say that value f satisfies

• linearity : if f(αv + βw) = αf(v) + βf(w) holds for all α, β ∈ R and v, w ∈ GN .

• efficiency : if
∑

j∈N fj(v) = v(N) holds for all v ∈ GN .

• equal treatment property : if j, k ∈ N are symmetric players in game v ∈ GN , that

is if v(S ∪ j) = v(S ∪ k) ∀S ⊆ N \ {j, k}, then fj(v) = fk(v).

4



• dummy player property : if j ∈ N is a dummy player in game v ∈ GN , that is if

v(S ∪ j)− v(S) = v(j) ∀S ⊆ N \ j, then fj(v) = v(j).

The best known and most frequently used value was introduced and characterized

by a few appealing properties by Lloyd Shapley.

Theorem 1. (Shapley, 1953) The value φ : GN → RN defined by

φi(v) =
∑

S⊆N\i

γN(S)[v(S ∪ i)− v(S)] (i ∈ N) (1)

where γN(S) =
s!(n− 1− s)!

n!
=

1

n
(
n−1
s

) and s = |S|, n = |N |, is the only value on GN

that satisfies linearity, efficiency, the equal treatment property, and the dummy player

property.

The Shapley value can also be axiomatized using a different set of axioms, see Young

(1985) for the axioms, Pintér (2015) for different classes of games and in particular

Khmelnitskaya (2003) for constant-sum games.

It is well-known that the weight coefficients {γN(S)}S⊆N\i form a probability distri-

bution, we call it the Shapley distribution, on the family 2N\i of coalitions that does not

contain player i. Therefore, φi(v) is the expected marginal contribution of player i in v

to coalitions not containing i, when the random formation of such coalitions is described

by the Shapley distribution. Since γN(S) depends only on the cardinalities n = |N | and

s = |S| of the two coalitions, we also write γn(s) when more convenient.

Next, we derive a specialized formula for the Shapley value of constant-sum games.

We denote the set of all constant-sum games on fixed player set N by GNCS.

Proposition 2. The Shapley value of constant-sum game v ∈ GNCS is

φi(v) = −v(N) + 2
∑

S⊆N\i

γN(S)v(S ∪ i) (i ∈ N). (2)

Proof. Let v be a constant-sum game and i ∈ N be fixed. For S ⊆ N \ i, we have

v(S) = v(N)− v(N \ S) = v(N)− v((N \ i \ S)∪ i). If we substitute this in the general

formula (1), we get φi(v) =
∑

S⊆N\i

γN(S)[v(S ∪ i) + v((N \ i \ S) ∪ i) − v(N)]. Since

γn(s) = 1

n(n−1
s )

= 1

n( n−1
n−1−s)

= γn(n − 1 − s) and N \ i \ S ⊆ N \ i, each coalition value

of type v(T ∪ i) for T ⊆ N \ i appears twice and is weighted by the same coefficient

in the sum. Taking out the constant term −v(N) from the summation, we get formula

(2).
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Notice that in constant-sum games, the Shapley payoff to a player depends on the

values of coalitions the player belongs to, no need to compute his marginal contributions.

Next, we investigate how the Shapley value of constant-sum games can be computed

based on its linearity. It is easily seen that any linear combination of constant-sum

games is also a constant-sum game. Thus GNCS is a linear subspace of GN . It is well-

known that additive games are the only balanced constant-sum games, so the standard

approach of decomposing a game as a linear combination of unanimity games cannot

be followed for GNCS. Only the additive unanimity games, that is, the dictator games

u{i} (i ∈ N), could be part of a basis for GNCS, but they are sufficient to span only the

n-dimensional linear subspace of GNCS consisting of the additive constant-sum games.

Foreshadowing the application of these game-theoretic results to a special type of

constant-sum games induced by liability problems with an insolvent firm, we arbitrarily

choose a player (the insolvent firm) and denote him by 0 ∈ N . The set of the n−1 other

players is denoted by C = N \ {0}. Given this fixed “highlighted” player, the family

of all coalitions is decomposed in two parts of equal size: the 2n−1 “partner” coalitions

containing 0 and the 2n−1 “complement” coalitions. Let P0 = {S ⊆ N : 0 ∈ S} denote

the family of partner coalitions of 0, and C0 = {S ⊆ N : 0 /∈ S} denote the family

coalitions not containing 0. Obviously, S ∈ P0 if and only if N \ S ∈ C0, In particular,

N ∈ P0 and ∅ ∈ C0, also {0} ∈ P0 and C ∈ C0.
In a constant-sum game v ∈ GNCS, we have v(N \ S) = v(N) − v(S) for all S ∈ P0,

thus the values of the partner coalitions v(S) (S ∈ P0) suffice to fully determine v. It

follows that the dimension of GNCS is at most 2n−1 = |P0|. Next, we show that, in fact,

equality holds. We present 2n−1 linearly independent “elementary” constant-sum games,

which form a very “convenient” basis of GNCS, the scalar coefficients in the (unique) linear

decompositions are simply the coalitional values.

We define for 0 ∈ R ( N the constant-sum game dR ∈ GNCS for all S ⊆ N by

dR(S) =


1, if S = R,

−1, if S = N \R,

0, otherwise.

(3)

For R = N , the constant-sum game dN ∈ GNCS is defined for all S ⊆ N as

dN(S) =

1, if S = N or 0 /∈ S 6= ∅,

0, otherwise.
(4)
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It is easily checked that dR(∅) = 0 and dR is indeed constant-sum for all R ∈ P0.

Moreover, dN(N) = 1 but dR(N) = 0 for all N 6= R ∈ P0. Notice that for all R, S ∈ P0,

we have dR(S) = 1 if and only if R = S, but dR(S) = 0 otherwise. It follows that the

2n−1 = |P0| games dR (R ∈ P0) are linearly independent in GNCS.

We summarize the above discussion in the following proposition.

Proposition 3. The games dR ∈ GNCS (R ∈ P0) form a basis of GNCS, henceforth

dim(GNCS) = 2n−1. Moreover, v(S) =
∑
R∈P0

v(R) · dR(S) for all S ⊆ N and v ∈ GNCS.

Consequently, by linearity of the Shapley value, φ(v) =
∑
R∈P0

v(R) · φ(dR).

The following example illustrates this proposition and foreshadows the subsequent

general discussion. For the sake of compactness, coalitions will be described without

braces and separating commas but overlined: for example, 0jk means coalition {0, j, k}.
Its value is shorthanded as v0jk = v(0jk).

Example 4 (n = 3, N = 0 ∪ 12).

P0 C0
S 0 01 02 N ∅ 1 2 12

v(S) v0 v01 v02 vN 0 vN − v02 vN − v01 vN − v0
d0(S) 1 0 0 0 0 0 0 −1

d01(S) 0 1 0 0 0 0 −1 0

d02(S) 0 0 1 0 0 −1 0 0

dN(S) 0 0 0 1 0 1 1 1

Trivially, v(S) = v0·d0(S)+v01·d01(S)+v02·d02(S)+vN ·dN(S) for all S ⊆ N and v ∈ GNCS.

We get that the Shapley value of any 3-player constant-sum game v (with distinguished

player 0) can be computed as the linear combination of the Shapley values of the above

four constant-sum basis games: φ(v) = v0 ·φ(d0) + v01 ·φ(d01) + v02 ·φ(d02) + vN ·φ(dN).

By formula (2), the Shapley payoffs to our special player 0 in the basis games:

φ0(d
0) = 2γ3(0) = 2/3, φ0(d

01) = 2γ3(1) = 2/6, φ0(d
02) = 2γ3(1) = 2/6, and φ0(d

N) =

−1 + 2γ3(2) = −1/3.

The payoffs to players 1 and 2 are then easily obtained from the efficiency and equal

treatment property of the Shapley value. In d0 players 1 and 2 are symmetric, in d01

players 0 and 1 are symmetric, in d02 players 0 and 2 are symmetric, finally in dN again

the complement players 1 and 2 are symmetric. By simple arithmetic, we get the sharing
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system (5).

φ0 φ1 φ2 v ∈ G012CS

d0 2/3 −1/3 −1/3 ·v0
d01 1/3 1/3 −2/3 ·v01
d02 1/3 −2/3 1/3 ·v02
dN −1/3 2/3 2/3 ·vN

(5)

The Shapley payoffs are easily computed from sharing system (5) for any 3-player

constant-sum game v with distinguished player 0. We simply take the linear combination

of the “partner” coalition values weighted with the “shares” of the given player. In

formula,

φ0(v) =
2v0 + v01 + v02 − vN

3
, φi(v) =

−v0 + v0i − 2v0j + 2vN

3
(i 6= j). (6)

The arguments of the above example can be generalized to obtain a similar sharing

system in general. Since the basis game values dR(S) (R, S ∈ P0) form a unit matrix,

by formula (2), using r = |R|, the Shapley payoffs to our special player 0 in the basis

games are

φ0(d
R) =

 2γn(r − 1), if R 6= N,

−1 + 2γn(n− 1, ) if R = N.
(7)

The payoffs to the players in C = N \{0} can then be easily obtained from the efficiency

and equal treatment property of the Shapley value.

For R ∈ P0 \ {N}, in basis game dR the players in R are all symmetric, so φ0(d
R) =

φi(d
R) for all i ∈ R. Similarly, the players in N \R are all symmetric, so φj(d

R) = φk(dR)

for all j, k ∈ N \ R. Since dR(N) = 0, efficiency gives rφ0(d
R) + (n − r)φk(dR) = 0,

where k ∈ N \R. From (7) we easily derive the Shapley payoffs in basis game dR when

R 6= N .

φi(d
R) =

2γn(r − 1), if i ∈ R,

−2γn(r), if i ∈ N \R.
(8)

For R = N , in basis game dN all non-distinguished players in C are symmetric, so

φj(d
N) = φk(dN) for all j, k ∈ N \ {0}. Since dN(N) = 1, efficiency gives φ0(d

N) + (n−
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1)φk(dN) = 1, where k 6= 0. From (7), we easily get the Shapley payoffs in dN as

φi(d
N) =

−1 + 2γn(n− 1), if i = 0,

2γn(n− 1), if i 6= 0.
(9)

Sharing system (10) schematically summarizes the above formulas. The columns corre-

spond to the partner coalitions of the form R = {0} ∪ S. The rows give the Shapley

values of players in the basis constant-sum games, first for our distinguished player 0,

second for a generic other player i ∈ C.

s = 0 · · · s = |S| · · · s = n− 1

i /∈ S · · · i ∈ S i /∈ S · · · i ∈ S(
n−2
0

)
· · ·

(
n−2
s−1

) (
n−2
s

)
· · ·

(
n−2
n−1

)(
n−1
0

)
· · ·

(
n−1
s

)
· · ·

(
n−1
n−1

)
φ0 2γn(0) · · · 2γn(s) 2γn(s) · · · −1 + 2γn(n− 1) = 1

φi −2γn(1) · · · 2γn(s) −2γn(s+ 1) · · · 2γn(n− 1) = 0

= 0 · · · = 0 · · · = 1

(10)

Any given player i ∈ C can either be a partner of player 0 or not. Thus, except when

S = ∅ or S = C, among the
(
n−1
s

)
coalitions S ⊆ C of size 1 ≤ s ≤ n − 2 there are(

n−2
s−1

)
coalitions which contain i, the remaining

(
n−2
s

)
coalitions do not contain i. The

following features of the Shapley sharing system are easily checked.

Proposition 5. In the Shapley sharing system (10)

1. the φ0 row sum = 1, every other φi (i ∈ C) row sum = 0;

2. the s = n− 1 column sum = 1, every other 0 ≤ s ≤ n− 2 column sum = 0.

Although in a general constant-sum game distinguishing one arbitrarily picked player

served only technical purposes, next, we discuss a special type of constant-sum games

where one player is indeed “different” from the other players.

3 Liability games and the Shapley value

We consider a special class of constant-sum games, liability games, introduced by Csóka

and Herings (2019).
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Let N = {0, 1, . . . , c} denote the set of agents, where agent 0 is a firm having a set of

creditors C = {1, . . . , c} with cardinality |C| = c ≥ 1. The firm has asset value A ∈ R+

and liabilities ` ∈ RC
+, with `i ∈ R+ the liability to creditor i ∈ C. The question is how

to allocate the asset value among the creditors and the firm. If the firm is solvent, that

is,
∑

i∈C `i ≤ A, then the obvious solution is that every creditor receives its full claim

and the firm keeps the rest. Henceforth we only consider the insolvent case, but for ease

of presentation, we also allow borderline solvency, that is,
∑

i∈C `i = A.

Definition 6. A liability problem is a pair (A, `) ∈ R+ × RC
+ such that

∑
i∈C `i ≥ A.

Let LN denote the class of liability problems1 on set of agents N = {0} ∪ C. We

seek a liability rule that assigns a unique allocation to each liability problem.

Definition 7 (Csóka and Herings (2019)). A liability rule is a function f : LN → RN
+

such that, for every (A, `) ∈ LN , the payment vector f = f(A, `) ∈ RN is an allocation,

that is a non-negative vector f ∈ R+ × RC
+ satisfying liabilities boundedness, that is,

fi ≤ `i for all i ∈ C, and efficiency, that is,
∑

i∈N fi = A.

Note that by non-negativity and efficiency, the payments in allocation f ∈ RN fall

between the following bounds:

0 ≤ f0 ≤ A and 0 ≤ fi ≤ `Ai for all i ∈ C,

where `Ai = min{A, `i} is the truncated liability of creditor i ∈ C. Let `A ∈ RC
+ denote

the vector of liabilities truncated by the asset value.

Given a subset of creditors S ⊆ C, we will use the notation `S = `(S) =
∑

i∈S `i for

the total liabilities of S and `A(S) =
∑

i∈S `
A
i for the total truncated liabilities of S. On

the other hand, we will also use the shorthand `AS = min{A, `(S)} = min{A, `A(S)} for

the truncated total (truncated) liabilities of creditor group S ⊆ C. Clearly, `AS ≤ `A(S),

and equality holds if and only if `(S) ≤ A.

A liability problem gives rise to a transferable utility cooperative game called liability

game (Csóka and Herings, 2019).

Definition 8. Let (A, `) ∈ LN be a liability problem. On player set N , the induced

liability game v : 2N → R is defined by setting, for S ∈ 2N ,

v(S) =

{
min{A, `(S \ {0})} = `AS\{0}, if 0 ∈ S,
max{0, A− `(C \ S)}, if 0 6∈ S.

1Csóka and Herings (2019) considers a slightly restricted class, when all liabilities are at most as
large as the asset value, the asset value is strictly positive, there are at least two creditors and the firm
is insolvent.
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Note that v(∅) = 0, 0 ≤ v(S) ≤ A for all S ∈ 2N , and v(N) = A. Csóka and

Herings (2019) notes that liability games are superadditive, that is, for all S, T ∈ 2N ,

S ∩ T implies v(S) + v(T ) ≤ v(S ∪ T ); and constant-sum, that is, for all S ∈ 2N ,

v(S)+v(N \S) = v(N). Due to their superadditivity and nonnegativity, liability games

are monotonic, that is, for all S, T ∈ 2N , S ⊂ T implies v(S) ≤ v(T ).

We aim to define a liability allocation rule by applying the Shapley value to the

induced liability game. This works in practice only if we can compute the Shapley-vector

of the liability game directly from the data of the underlying liability problem, that is,

from the asset value and the liabilities. The following straightforward observation implies

that our indirect approach could only provide a liability rule that ignores excessive parts

of the claims. Notice that cutting off the parts of liabilities over the asset value does

not make the firm solvent, that is, `(C) ≥ A implies `A(C) ≥ A.

Remark 9. Liability problems (A, `) and (A, `A) induce the same liability game, where

`A denotes the vector of liabilities truncated by the asset value.

It follows that the Shapley rule (or any other allocation rule defined via a single-valued

solution of the induced game) is different from rules that allocate (some portion of) the

asset value among the creditors proportional to their claims. We will see in Example

11 that the Shapley rule is also different from rules that allocate (some portion of) the

asset value among the creditors proportional to their truncated liabilities.

Next, we show that the Shapley value indeed defines a liability rule, that is, the

Shapley-vector of the liability game associated with a liability problem is an allocation.

Proposition 10. Let (A, `) ∈ LN be a liability problem and let v be the induced liability

game on N . Then the Shapley-vector φ(v) of v satisfies efficiency, non-negativity, and

(truncated) liabilities boundedness.

Proof. The Shapley value assigns an efficient vector to any TU game, so for any liability

game (N, v) we have
∑

i∈N φi(v) = v(N) = A. The other two properties follow from

formula (1), once we show 0 ≤ v(S ∪ 0) − v(S) for all S ⊆ C = N \ 0 and 0 ≤
v(S ∪ i)− v(S) ≤ `i for all i ∈ C, S ⊆ N \ i.

All marginal contributions of the firm are non-negative. Indeed, v(S ∪ 0) − v(S) =

min{`(S), A}−max{A−`(C \S), 0} is obviously non-negative if the second term is zero.

If it is positive, that is, A > `(C\S), then insolvency of the firm gives `(S) ≥ A−`(C\S),

and that, coupled with the obvious A ≥ A − `(C \ S), implies non-negativity of the

marginal contribution.

Now let i ∈ C be a creditor and S ⊆ N \ i. We have two cases. If 0 ∈ S, so v(S∪ i)−
v(S) = min{`(S \ 0) + `i, A}−min{`(S \ 0), A}, then the difference is clearly between 0
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and `i. If 0 /∈ S, so v(S ∪ i)− v(S) = max{A− `(C \S) + `i, 0}−max{A− `(C \S), 0},
then again the difference is clearly between 0 and `i. Thus, we get non-negativity of all

marginal contributions for all creditors, as well as liabilities boundedness.

Since non-negativity and efficiency imply φi ≤ A for all i ∈ N , including the firm,

for creditor i ∈ C we can sharpen the upper bound to φi ≤ `Ai .

Next, we define (truncated) debt forgiveness of a creditor as the difference between

the (truncated) liability towards him and the payment he receives. Formally, let (A, `) ∈
LN be a liability problem and x ∈ RN

+ be an allocation. The debt forgiveness of creditor

i ∈ C is given by `i − xi. The truncated debt forgiveness by creditor i ∈ C is given by

`Ai − xi = min{A, `i} − xi.

Example 11. Consider a generic liability problem with two creditors, so N = {0, 1, 2}
and A ≤ `1 + `2. The induced liability game v is the following:

S {0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}
v(S) 0 A− `A2 A− `A1 `A1 `A2 A A

The Shapley-payments can be obtained from formulas (6) derived for 3-player constant-

sum games. The bounds follow from A ≤ `1 + `2 implying A ≤ `A1 + `A2 ≤ 2A.

For the firm,

0 ≤ φ0 =
`A1 + `A2 − A

3
≤ A

3
.

Clearly both bounds are sharp. Notice that at the Shapley allocation, an insolvent firm

ends up with a strictly positive payoff.

For creditor i 6= j ∈ C, since 0 ≤ A− `Aj ≤ `Ai ,

`Ai
3
≤ φi =

`Ai − 2`Aj + 2A

3
= `Ai − 2φ0 ≤ `Ai .

It is easily seen that both bounds are sharp. For the debt forgiveness and for the

truncated debt forgiveness of creditor i ∈ C, we immediately get the following sharp

bounds:

`i − `Ai ≤ `i − φi ≤ `i −
`Ai
3
, 0 ≤ `Ai − φi = 2φ0 ≤

2`Ai
3
.

Observe that both creditors give the same truncated debt forgiveness (2φ0) to the firm.

It also follows from the above formulas that if `i ≤ `j, hence also `Ai ≤ `Aj , then

φi ≤ φj and `i − φi ≤ `j − φj. That is, at the Shapley allocation, the creditor with

higher claim gets higher payment, but it also gives an at least as high debt forgiveness.

12



Example 12. Consider a generic liability problem with three creditors, so C = {1, 2, 3},
N = {0} ∪ C, and A ≤ `1 + `2 + `3. We compute the Shapley allocation from sharing

system (10) derived for constant-sum games using only values of coalitions, which contain

the distinguished player 0, now the firm. For n = 4 we get

S 3 0 {0} {0, 1} {0, 2} {0, 3} {0, 1, 2} {0, 1, 3} {0, 2, 3} N

v(S) 0 `A1 `A2 `A3 `A12 `A13 `A23 A

φ0 1/2 1/6 1/6 1/6 1/6 1/6 1/6 −1/2

φ1 −1/6 1/6 −1/6 −1/6 1/6 1/6 −1/2 1/2

φ2 −1/6 −1/6 1/6 −1/6 1/6 −1/2 1/6 1/2

φ3 −1/6 −1/6 −1/6 1/6 −1/2 1/6 1/6 1/2

(11)

where `AS = min{A, `(S)} = min{A, `A(S)}. The Shapley payments are obtained by

multiplying row [v(S)] of the coalition values by row [φk] of the shares for player k ∈ N .

The Shapley payment of the firm is φ0 = 1
6

∑
i∈C(`Ai + `Ajk − A) with i 6= j 6= k ∈ C.

Since `Ai + `Ajk −A = min{A, `i}+ min{A, `j + `k}−A = min{A, `i, `j + `k, L−A} with

L = `(C) ≥ A, we get 0 ≤ `Ai + `Ajk − A ≤ A. It follows that

0 ≤ φ0 ≤
A

2
.

It can be easily checked that both bounds are sharp. Notice that at the Shapley alloca-

tion, an insolvent firm ends up with a strictly positive payoff.

From system (11), the Shapley payment of creditor i ∈ C is φi = 1
2
(A − `Ajk) +

1
6

∑
j 6=i∈C(`Aij− `Aj )+ 1

6
`Ai with i 6= j 6= k ∈ C. Since 0 ≤ A− `Ajk = A−min{A, `j + `k} =

max{0, A−`j−`k} ≤ `Ai and 0 ≤ `Aij−`Aj = min{A, `i+`j}−`Aj = min{A, `Ai +`Aj }−`Aj =

min{A− `Aj , `Ai } ≤ `Ai , we get

`Ai
6
≤ φi ≤ `Ai .

Again, all these bounds are sharp. For the debt forgiveness and for the truncated debt

forgiveness of creditor i ∈ C we immediately get the following sharp bounds:

`i − `Ai ≤ `i − φi ≤ `i −
`Ai
6

0 ≤ `Ai − φi ≤
5`Ai
6
.

Notice that if for creditors i 6= j we have `i ≤ `j, then 0 ≤ `Aj − `Ai ≤ `j − `i and

with the third creditor k 6= i, j, 0 ≤ `Ajk − `Aik ≤ `Aj − `Ai ≤ `j − `i. Since φj − φi =
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1
3
(`Aj − `Ai ) + 2

3
(`Ajk − `Aik), we get 0 ≤ φj − φi ≤ `Aj − `Ai ≤ `j − `i. It follows that at the

Shapley allocation, the creditor with higher claim gets higher payment (unless A ≤ `i, `j

when both get the same payment), but also gives an at least as high (truncated) debt

forgiveness.

4 Properties of the Shapley allocation rule

In this section, we generalize the observations we made on the Shapley allocations for

2- and 3-creditor liability problems in Examples 11 and 12, and investigate further

properties of the Shapley liability rule.

In Proposition 10, we showed that the Shapley rule satisfies efficiency, non-negativity

and (truncated) liabilities boundedness, hence it is a liability rule. It immediately follows

from these properties that the Shapley rule (as any liability rule) respects minimal rights

of creditors, that is, it satisfies φi ≥ max{0, A − `(C \ i)} for any i ∈ C. Notice that

the minimal right of creditor i is precisely his value v(i) in the liability game, which is

superadditive, and the Shapley value is well-known to prescribe individually acceptable

payoffs in superadditive games. Recall that in Remark 9 we noticed that the Shapley

rule (as any rule induced by a solution of an associated TU game) ignores excessive

parts of claims, that is, φ(A, `) = φ(A, `A).

Since liability games are constant-sum, from sharing table (10), taken into account

that v(0 ∪ S) = `AS for coalitions of the form 0 ∪ S with S ⊆ C, we get that for liability

problem (A, `) the Shapley rule prescribes the following payments.

φ0(A, `) = −A+ 2
∑
S⊆C

γn(s)`AS , (12)

φi(A, `) = 2
∑

S⊆C\i

γn(s+ 1)(`AS∪i − `AS ), (i ∈ C) (13)

where s = |S| and `AS = min{A,
∑

i∈S `i}.
First, we establish lower and upper bounds for the Shapley payment of the firm.

Proposition 13. Let (A, `) ∈ LN be a liability problem and let v be the induced liability

game on N . Then for the Shapley payment of the firm φ0 we have that

0 ≤ n− 2

n
min{A,min

i∈C
`i, `C − A} ≤ φ0(A, `) ≤

n− 2

n
A. (14)
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Proof. Since v(0) = `A∅ = 0, v(N) = `AC = A, and γn(S) = γn(C \ S) for S ⊆ C,

φ0(A, `) =
∑
∅6=S 6=C

γn(s)(`AS + `AC\S) +
2− n
n

A. (15)

If n = 2 then the summation in (15) is over the empty set, thus φ0(A, `) = 0. It

means that the Shapley rule allocates the full asset value to the single creditor. In

contrast, if c ≥ 2, then the firm has some implicit bargaining leverage by threatening

to form a coalition with the other creditors and compensate them first up to their

full liabilities or the asset value. From `AS + `AC\S = min{2A,A + `S, A + `C\S, `C} =

A + min{A, `S, `C\S, `C − A} and
∑
∅6=S 6=C γn(s) = n−2

n
, where s = |S|, we get φ0 =∑

∅6=S 6=C

γn(s) min{A, `S, `C\S, `C − A}. Equation (14) now follows.

In the insolvent (non-degenerate) case, that is, if `C > A (and A > 0), mini∈C `i > 0),

the lower bound is positive, that is, the firm ends up with positive payoff. The lower

bound in (14) is sharp if and only if `C − A ≤ A and `C − A ≤ mini∈C `i, that is, the

deficiency of the firm does not exceed any of the individual liabilities and the asset value.

The upper bound in (14) is sharp if and only if A ≤ mini∈C `i (that implies `C −A ≥ A

for c ≥ 2), that is, all creditors claim the full asset value so each one is willing to forgive

some of its debt to stay a partner of the firm and receive some positive payment. Note

that in this case as the number of creditors increases, the firm can keep almost all the

asset value.

Second, we establish lower and upper bounds for the Shapley payments of the cred-

itors.

Proposition 14. Let (A, `) ∈ LN be a liability problem and let v be the induced liability

game on N . Then for any i ∈ C for the Shapley payment of the creditor φi have that

2

n(n− 1)
`Ai ≤ φi(A, `) ≤

(
2

n(n− 1)
+

(n− 2)(n+ 1)

n(n− 1)

)
`Ai = `Ai . (16)

Proof. Since v(0) = `A∅ = 0 and γn(1) = 1
n(n−1) , from (13) we get for i ∈ C,

φi(A, `) =
2

n(n− 1)
`Ai + 2

∑
∅6=S⊆C\i

γn(s+ 1)(`AS∪i − `AS ). (17)

If n = 2, that is, C = {1}, then the summation in (17) is over the empty set, thus

φ1(A, `) = `Ai . It means that the Shapley rule allocates the full asset value to the single

creditor. In contrast, if c ≥ 2 then the summation in (17) is clearly non-negative, and
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it is zero if and only if A ≤ `Ai for all i ∈ C. On the other side, `AS∪i − `AS = min{A −

`AS , `
A
i } ≤ `Ai in case of A > `AS . It follows from

∑
∅6=S⊆C\i

γn(s + 1) =
n−2∑
s=1

(
n− 2

s

)
γn(s +

1) =
n−2∑
s=1

(n− 2)!

s!(n− 2− s)!
1

n

(s+ 1)!(n− 2− s)!
(n− 1)!

=
n−2∑
s=1

s+ 1

n(n− 1)
=

(n− 2)(n+ 1)

2n(n− 1)
that the

summation in (17) is at most
(n− 2)(n+ 1)

n(n− 1)
`Ai , and equality holds if and only if A ≥ `C

(that implies A ≥ `S∪i for all S ⊆ C \ i).

Both bounds are sharp in (16). The lower bound is attained when all creditors claim

the full asset value, hence considerably weaken each other’s bargaining position. On the

other side, the creditors can be fully compensated if and only if the firm is solvent.

Next, we show that creditors with higher claims get higher Shapley payments, but

they also give higher (truncated) debt forgiveness.

Proposition 15. Let (A, `) ∈ LN be a liability problem and v the induced liability

game. Let i, j ∈ C be such that `i ≤ `j. At the Shapley value it holds that φi ≤ φj,

`i − φi ≤ `j − φj and `Ai − φi ≤ `Aj − φj.

Proof. Let i, j ∈ C be two creditors with `i ≤ `j, hence also `Ai ≤ `Aj . Since liability

games are constant-sum games, we use formula (2) to show 0 ≤ φj−φi ≤ `Aj −`Ai ≤ `j−`i.
When taking the difference φj − φi the terms v(S ∪ i∪ j), S ⊆ N \ {i, j}, containing

both players cancel out, so we get

φj(v)− φi(v) =
2

n

n−1∑
s=0

1(
n−1
s

) ∑
S⊆N\{i,j}:|S|=s

(v(S ∪ j)− v(S ∪ i)). (18)

It is easily checked from the definition of v that 0 ≤ v(S∪j)−v(S∪i) ≤ `Aj −`Ai ≤ `j−`i
for all S ⊆ N \ {i, j}. Substituting each term in (18) with these non-negative constant

bounds gives

0 ≤ φj(v)− φi(v) ≤ (`Aj − `Ai ) · 2

n

n−1∑
s=0

1(
n−1
s

)(n− 2

s

)
, (19)

since there are
(
n−2
s

)
coalitions S ⊆ N\{i, j} of cardinality s. From 2

n

∑n−1
s=0

1

(n−1
s )

(
n−2
s

)
=

2
n

∑n−1
s=0 (1− s

n−1) = 2
n
(n− 1

n−1
∑n−1

s=0 s) = 2
n
(n− n

2
) = 1, and the obvious `Aj −`Ai ≤ `j−`i,

the claim follows.

The property formulated in Proposition 15 is called order preservation in the review

article on bankruptcy rules by Thomson (2015). It obviously implies equal treatment of
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equal creditors, that is, if two creditors have the same claims, then they should get the

same compensations. From Proposition 15 we readily get that the Shapley rule treats

creditors with equal (truncated) liabilities in the same way.

Corollary 16. Let (A, `) ∈ LN be a liability problem and v the induced liability game.

Let i, j ∈ C be such that `i = `j. At the Shapley value it holds that φi = φj, `i − φi =

`j − φj and `Ai − φi = `Aj − φj.

Next, we discuss monotonicity properties of liability rules. The question is how

changes in the parameters of a liability problem influence the payments of the agents.

First, we investigate what happens to the payment of one creditor if his liability

increases, but every other parameter of the problem stays put. We say that liability rule

f : LN → RN
+ is liability monotonic if for any creditor i ∈ C and liability problems (A, `),

(A, `′) such that `′i > `i and `′k = `k for all k ∈ C \ i, it holds that fi(A, `
′) ≥ fi(A, `).

We show that the Shapley rule is liability monotonic. Moreover, also the firm can only

benefit from the increase of a liability.

Proposition 17. Let liability problems (A, `) and (A, `′) be such that `′i > `i for i ∈ C,

and `′k = `k for all k ∈ C \ i. Then

φi(A, `
′) ≥ φi(A, `) +

2

n(n− 1)
min{`′i − `i, A− `Ai }.

Moreover, φ0(A, `
′) ≥ φ0(A, `).

Proof. Let liability problems (A, `) and (A, `′) be such that `′i > `i for i ∈ C, and `′k = `k

for all k ∈ C \ i. Clearly, `′AS∪i ≥ `AS∪i and `′AS = `AS whenever S ⊆ C \ i. From formula

(17) we get

φi(A, `
′)− φi(A, `) =

2

n(n− 1)
(`′Ai − `Ai ) + 2

∑
∅6=S⊆C\i

γn(s+ 1)(`′AS∪i − `AS∪i). (20)

Since the summation term in (20) is non-negative, and `′Ai − `Ai = min{`′i − `i, A− `Ai },
the inequality for φi(A, `) follows.

From formula (12) we get

φ0(A, `
′)− φ0(A, `) = 2

∑
S⊆C\i

γn(s+ 1)(`′AS∪i − `AS∪i) + 2
∑

S⊆C\i

γn(s)(`′AS − `AS ). (21)

Since each term in the first summation is non-negative, and zero in the second one, we

conclude that the payment to the firm can only increase if a liability increases.
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Second, we investigate the changes in the payments to the creditors and the firm if

the asset value increases, but all liabilities remain the same. We say that liability rule

f : LN → RN
+ is asset monotonic for creditors if for any creditor i ∈ C and liability

problems (A, `), (A′, `) such that `(C) ≥ A′ > A, it holds that fi(A
′, `) ≥ fi(A, `). We

show that the Shapley rule is asset monotonic for creditors, but the firm can end up

with smaller or with higher payoff.

Proposition 18. Let liability problems (A, `) and (A′, `) be such that `(C) ≥ A′ > A.

Then for any creditor i ∈ C,

0 ≤ φi(A
′, `)− φi(A, `) ≤ min{A′ − A, `i},

and for the firm,

2− n
n

(A′ − A) ≤ φ0(A
′, `)− φ0(A, `) ≤

n− 2

n
(A′ − A).

Moreover, for c = |C| ≥ 2, all bounds are sharp.

In case of a single creditor C = {1}, φ1(A
′, `) − φ1(A, `) = A′ − A and φ0(A

′, `) =

φ0(A, `).

Proof. Let liability problems (A, `) and (A′, `) be such that `(C) ≥ A′ > A. From

formula (13) we get for any i ∈ C,

φi(A
′, `)− φi(A, `) = 2

∑
S⊆C\i

γn(s+ 1)
[
(`A

′

S∪i − `AS∪i)− (`A
′

S − `AS )
]
. (22)

First of all, since
[
(`A

′
S∪i − `AS∪i)− (`A

′
S − `AS )

]
=
[
(`A

′
S∪i − `A

′
S )− (`AS∪i − `AS )

]
and the dif-

ference `AS∪i − `AS = min{`i, A − `AS} where A − `AS = max{A − `S, 0} is clearly non-

decreasing in A, we get that the difference in the bracket in each term is non-negative,

implying asset monotonicity for creditor i ∈ C.

Let us assume c ≥ 2. Then there are at least two different terms in (22). One is the

term for S = ∅. It equals 2
n(n−1)

[
(`A

′
i − `Ai )− (0− 0)

]
. The difference in the bracket

can range from 0 (attained, if `i ≤ A < A′) to min{A′ − A, `i} (attained, if A < A′ ≤
`i). The other term is for S = C \ i 6= ∅. It equals 2

n

[
(`A

′
C − `AC)− (`A

′

C\i − `AC\i)
]

=

2
n

[
(A′ − A)− (`A

′

C\i − `AC\i)
]

. Again, the difference in the bracket can range from 0

(attained, if A < A′ ≤ `C\i) to (A′ − A) (attained, if `C\i ≤ A < A′)). Likewise, if

`i ≤ A < A′ but A < A′ ≤ `j for any other creditor j 6= i, then all terms in (22) are

zero, implying that the zero lower bound is indeed sharp. In contrast, if A < A′ ≤ `i but

`C\i ≤ A < A′ (implying `j ≤ A < A′ for any other creditor j 6= i), then the differences
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in all brackets in (22) are equal to min{A′ − A, `i}. In light of 2
∑

S⊆C\i γn(s + 1) = 1,

the claimed upper bound is also sharp.

For the change in the Shapley payment to the firm, taken into account that `A∅ = 0

and `AC = A, from formula (12) we get

φ0(A
′, `)− φ0(A, `) = −(A′ − A) + 2

∑
∅6=S(C

γn(s)(`A
′

S − `AS ) +
2

n
(A′ − A). (23)

Since the difference `A
′

S − `AS is clearly non-negative but cannot exceed A′ − A, from∑
∅6=S(C γn(s) = 1 − 2

n
, the claimed inequalities for the difference φ0(A

′, `) − φ0(A, `)

follow. The negative lower bound is attained if `S ≤ A for every non-empty set of

creditors S 6= C implying `A
′

S − `AS = 0. The positive upper bound is attained if `i ≥ A′

for all creditors i ∈ C implying `S ≥ A′ and `A
′

S − `AS = A′ − A for every non-empty set

of creditors S 6= C.

Finally, in case of a single creditor C = {1}, equation (22) simplifies to φ1(A
′, `) −

φ1(A, `) = 2
2(2−1)

[
(`A

′
i − `Ai )− (0− 0)

]
= A′ − A, reconfirming that the Shapley rule

gives everything to the single creditor. By efficiency, the firm ends up with nothing,

thus, φ0(A
′, `)− φ0(A, `) = 0− 0 = 0. Notice that for n = 2, the summation in (23) is

over the empty set, and the claimed lower and upper bounds coincide at zero.

The following property, called super-modularity by Thomson (2015), is a kind of

combination of order preservation (when the payments to two creditors in the same

problem are compared) and asset monotonicity (when the payments to the same creditor

in two related problems are compared). We say that liability rule f : LN → RN
+ is

super-modular for creditors if for any two creditors i, j ∈ C with `i ≥ `j and liability

problems (A, `), (A′, `) such that `(C) ≥ A′ > A, it holds that fi(A
′, `) − fi(A, `) ≥

fj(A
′, `)−fj(A, `). We show that the Shapley rule is super-modular for creditors, thus it

allocates from the increment in the asset value more to creditors with higher liabilities.

Proposition 19. Let liability problems (A, `) and (A′, `) be such that `(C) ≥ A′ > A.

If `i ≥ `j for creditors i, j ∈ C then

0 ≤ (φi(A
′, `)− φi(A, `))− (φj(A

′, `)− φj(A, `)) ≤ min{`i − `j;A′ − A}. (24)

Proof. Given two creditors i, j ∈ C, a set of creditors S ⊆ C can be one of four types:

S contains both i and j; contains i but not j; contains j but not i; contains neither i

nor j. For brevity, we represent S ⊆ C respectively as Rij, Ri, Rj, R with a generic
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R ⊆ C \ {i, j}. From the formula in (13) we get that φi(A
′, `)− φi(A, `) =

2
∑
R

{
γn(r + 1)

[
`A
′

Ri − `ARi − `A
′

R + `AR

]
+ γn(r + 2)

[
`A
′

Rji − `ARji − `A
′

Rj + `ARj

]}
. (25)

Exchanging i and j gives φj(A
′, `)− φj(A, `) =

2
∑
R

{
γn(r + 1)

[
`A
′

Rj − `ARj − `A
′

R + `AR

]
+ γn(r + 2)

[
`A
′

Rij − `ARij − `A
′

Ri + `ARi

]}
. (26)

Subtracting (26) from (25) gives (φi(A
′, `)− φi(A, `))− (φj(A

′, `)− φj(A, `)) =

2
∑
R

[γn(r + 1) + γn(r + 2)]
[
(`A

′

Ri − `ARi)− (`A
′

Rj − `ARj)
]
. (27)

Suppose `i ≥ `j, implying `Ri ≥ `Rj. It is easily checked that

(`A
′

Ri − `ARi)− (`A
′

Rj − `ARj) =



0, if `Rj ≤ `Ri ≤ A ≤ A′,

`Ri − A, if `Rj ≤ A ≤ `Ri ≤ A′,

A′ − A, if `Rj ≤ A ≤ A′ ≤ `Ri,

`Ri − `Rj, if A ≤ `Rj ≤ `Ri ≤ A′,

A′ − `Rj, if A ≤ `Rj ≤ A′ ≤ `Ri,

0, if A ≤ A′ ≤ `Rj ≤ `Ri.

It follows that

0 ≤ (`A
′

Ri − `ARi)− (`A
′

Rj − `ARj) ≤ min{`Ri − `Rj = `i − `j;A′ − A}.

Taken into account that∑
R⊆C\ij

[γn(r + 1) + γn(r + 2)] =
∑

R⊆C\ij

γn(r + 1) +
∑

j∈Q⊆C\i

γn(q + 1)

=
∑

S⊆C\i

γn(s+ 1) = 1/2,

where q = |Q| and s = |S|, from (27) we get the claimed inequalities in (24).

A straightforward corollary of Proposition 19 is that if `i = `j for creditors i, j ∈ C
then

φi(A
′, `)− φi(A, `) = φj(A

′, `)− φj(A, `).
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5 Complexity of computing the Shapley value

Even though liability games are constant-sum and we showed in (12) and (13) that the

Shapley value can be calculated directly from a liability problem, now we prove that

calculating the Shapley payoff to the firm is NP-hard.

Theorem 20. Given two liability problems and the induced liability games, it is NP-hard

to verify whether the firm has the same Shapley value in both games.

Proof. Recall the NP-complete subset sum problem SUBSUM (See for instance Garey

and Johnson (1979)): given a1, a2, . . . , an ∈ Z and K ∈ Z we ask whether there exists

a subset ai1 , ai2 , . . . , aik such that
∑
aij = K. Here we consider a special case of this

problem: HALFSUM: given positive integers a1, a2, . . . , an we ask whether there exists

a subset ai1 , ai2 , . . . , aik such that
∑
aij =

∑
ai
2

. It is very easy to show by the following

steps that HALFSUM is still NP-complete.

• It is trivial to show that SUBSUM is NP-complete if we restrict it to even numbers,

so we can assume that
∑
ai is even.

• We get an equivalent instance of SUBSUM if we replace K by
∑
ai −K. Using

this observation, it is clear that we can assume that K ≤
∑

ai
2

.

• This special form of SUBSUM can be reduced to HALFSUM by adding an extra

number an+1 =
∑

ai
2
−K to the set.

We reduce HALFSUM to the Shapley value calculation. Let HS = (a1, a2, . . . , an)

be an instance of the HALFSUM problem. Consider the liability problems (A, `) and

(A − 1, `), where ` = (`1, `2, . . . , `n) = (a1, a2, . . . , an) and A =
∑

ai
2

. Let v and v2 be

the liability games corresponding to (A, `) and (A − 1, `), respectively. We show that

the defaulting firm has a different Shapley value in v and v2 if and only if the instance

of the HALFSUM problem has a solution.

Given a subset of creditors S ⊆ C, let mc(S) = v(S∪{0})−v(S) be the marginal con-

tribution of player 0 in the liability game v, corresponding to the first liability problem.

We claim that

mc(S) =

`(S), if `(S) ≤ A,

`(C \ S), if `(S) ≥ A.
(28)

To prove (28), recall that the value of the assets A is exactly half of the sum of

liabilities. Notice that creditors in S can be paid if and only if creditors in C \S cannot
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be paid. If `(S) ≤ A, then v(S) = 0, however, in this case v(S ∪ {0}) = `(S). If

`(S) ≥ A, then v(S) = A− `(C \ S) and v(S ∪ {0}) = A.

Let φ0 be the Shapley value of player 0 in v. We have that

n!φ0 =
∑
S⊆C

|S|!(n− |S| − 1)!mc(S) =
∑

`(S)<A

|S|!(n− |S| − 1)!`(S)

+
∑

`(S)=A

|S|!(n− |S| − 1)!A +
∑

`(S)>A

|S|!(n− |S| − 1)!`(C \ S). (29)

Now consider the game v2, that is, decrease the asset value A by 1. Let mc2(S) =

v2(S ∪ {0})− v2(S).

If S is a coalition such that `(S) < A, then `(S) ≤ A− 1, so the liabilities in S can

still be paid in v2 and `(C \ S) > A > A − 1, liabilities in C \ S obviously cannot be

paid with less asset value. It follows that v2(S) = 0 and v2(S ∪ {0}) = `(S). (Recall

that ` is the same in both problems.) Now let’s consider a coalition of creditors S ⊂ C

such that `(S) > A. In this case `(C \ S) < A, that is, `(C \ S) ≤ A − 1. Liabilities

in S cannot be paid and liabilities in C \ S can be paid not only in game v but also

in game v2. This means that v2(S) = A − 1 − `(C \ S) and v2(S ∪ {0}) = A − 1, so

mc(S) = (A− 1)− (A− 1− `(C \ S) = `(C \ S).

It follows that in (29), the first and the last term do not change in v2, implying that

if HS is a FALSE instance of problem HALFSUM, then the sum of these terms does

not change when we decrease the value of assets by 1. In this case, the second term is

empty.

On the other hand, let’s consider a coalition where `(S) = A exactly. In this case,

v(S) = 0 and v(S ∪ {0}) = mc(S) = A in the first game. However, in the second game,

v2(S) = v(S) = 0 but v2(S ∪ {0}) = mc2(S) = A− 1. If HS is a TRUE instance of the

HALFSUM problem, then the Shapley value of player 0 decreased in game v2 compared

to game v.

References
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