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ABSTRACT 
In cooperative games, the coalition structure core is, despite its potential emptiness, 

one of the most popular solutions. While it is a fundamentally static concept, the 

consideration of a sequential extension of the underlying dominance correspondence 

gave rise to a selection of non-empty generalizations. Among these, the payoff-

equivalence minimal dominant set and the myopic stable set are defined by a similar 

set of conditions. We identify some problems with the payoff-equivalence minimal 

dominant set and propose an appropriate reformulation called the minimal dominant 

set. We show that replacing asymptotic external stability by sequential weak 

dominance leaves the myopic stable set unaffected. The myopic stable set is therefore 

equivalent to the minimal dominant set. 
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A legkisebb domináns halmaz és a koalíciós játékokra 

értelmezett miopikus stabil halmaz ekvivalenciája 

P. JEAN-JACQUES HERINGS – KÓCZY Á. LÁSZLÓ 

ÖSSZEFOGLALÓ 

A koalíció strukturás mag, bár lehet üres is, a kooperatív játékok egyik legnépszerűbb 

megoldása annak ellenére. Bár alapvetően statikus fogalom, a megfelelő dominancia-

reláció szekvenciális kiterjesztése több nemüres általánosítást is eredményezett. Ezek 

közül a kifizetés-ekvivalens legkisebb domináns halmazt és a miopikus stabil halmazt 

hasonló feltételek határozzák meg. Megállapítunk bizonyos problémákat a kifizetés-

ekvivalens legkisebb domináns halmazzal kapcsolatban és ezeket módosítva egy új 

fogalomra teszünk javaslatot, melyet legkisebb domináns halmaznak nevezünk. 

Megmutatjuk, hogy a miopikus stabil halmaz nem változik, ha az asszimptotikus külső 

stabilitást szekvenciális gyenge dominanciára cseréljük. Így a miopikus stabil halmaz 

és a legkisebb domináns halmaz egybeesnek.  
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1 Introduction

The core is one of the most popular solution concepts in cooperative game theory. It

introduces a coalitional notion of stability not unlike the Nash equilibrium: once such a

proposal is made, it is not abandoned. The similarities go further: neither of these concepts

tell us how such agreements are reached. Suppose the game starts with an arbitrary

proposal: how to move from this proposal to an acceptable, equilibrium allocation?

To our knowledge Stearns (1968) was the first to look at this problem by considering

a recontracting process where myopic deviations by coalitions are considered as improve-

ments. Green (1974), Neuefeind (1974), and Wu (1977) present results that such improve-

ments almost surely or approximately reach the core. The results of Arnold and Schwalbe

(2002) extend even to NTU-games. More recently, Roth and Vande Vate (1990), Diaman-

toudi, Miyagawa, and Xue (2004), Klaus and Klein (2007) and Chen, Fujishige, and Yang

(2016) show for matching markets and Sengupta and Sengupta (1994, 1996), Kóczy and

Lauwers (2004), and Kóczy (2006) show for coalitional games that the core can actually

be reached. The latter results prove the existence of an upper bound on the number of

steps needed. This bound has since been drastically lowered (Yang, 2010, 2011; Béal et al.,

2012, 2013a,b).

It is natural to ask where do these coalitional improvements lead in case the core

is (possibly) empty. Sengupta and Sengupta (1994) define the set of viable proposals,

Kóczy and Lauwers (2007) the payoff-equivalence minimal dominant set1 and most recently

Demuynck, Herings, Saulle, and Seel (2019) the myopic stable set. All these concepts rely

on notions of sequential dominance and belong to the family of stochastic solutions (Packel,

1981) with appropriate restrictions on the permitted transitions.

We identify a problem in the definition of the payoff-equivalence minimal dominant set;

under the current definition Theorem 4 of Kóczy and Lauwers (2007) does not hold. The

problem is caused by the incorporation of payoff equivalent outcomes in the dominance

correspondence. We argue that payoff equivalence should be dropped, which leads to the

notion of the minimal dominant set. We go on to show that the minimal dominant set

and the myopic stable set are equivalent, where for the latter concept it does not matter

whether strict or weak dominance is used in the definition. It then follows from Yang

(2020) that both concepts are included in the set of viable proposals.

Accordingly, the structure of the paper is as follows. First, we introduce the basic

terminology and notation together with both the payoff equivalent minimal dominant set

and the minimal dominant set. Then we introduce the myopic stable set and its variant

based on weak dominance called the weak dominance myopic stable set. Finally, we present

1Kóczy and Lauwers (2007) use the terminology minimal dominant set, but following the later literature

we reserve this term for a different concept.
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our main result showing the equivalence of the minimal dominant set, the myopic stable

set, and the weak dominance myopic stable set.

2 The Payoff-equivalence Minimal Dominant Set

A characteristic function form game is defined by a pair (N, v), where N is a set of players

with cardinality n and a characteristic function v : 2N → R that assigns to each coalition

C ⊆ N a number v(C) ∈ R, called the worth of C, with the usual convention that

v(∅) = 0. The collection of non-empty coalitions is denoted by N . A coalition structure

is a partition P = {C1, . . . , Cm} of N . It describes how the grand coalition is divided

into non-overlapping subcoalitions. The collection of all coalition structures, that is, the

collection of partitions of N , is denoted by Π. For a coalition C ∈ N , let 〈C〉 denote the

partition into singleton coalitions. Formally, we have that 〈C〉 = {{i} | i ∈ C}.
For a coalition structure P ∈ Π and a coalition D ∈ N , the partners’ set P (D,P) of D

in P is the union of those coalitions in P that have a non-empty intersection with D, the

residual players R(D,P) are the players in the partners’ set outside D and the outsiders

O(D,P) are all the players outside the partners’ set, so more formally we have

P (D,P) =
⋃

C∈P, C∩D 6=∅

C, (2.1a)

R(D,P) = P (D,P) \D, (2.1b)

O(D,P) = N \ P (D,P). (2.1c)

The collection of coalitions to which the outsiders belong is given by

O(D,P) = {O ∈ P | O ∩D = ∅}.

For coalition function form games, we define the set of outcomes X as the set of coalition

structures Π together with all individually rational payoff vectors that can be obtained by

allocating the worths among the members of the respective coalitions:

X =

{
(P , u) ∈ Π×RN | ∀i ∈ N, ui ≥ v({i}) and, ∀C ∈ P ,

∑
i∈C

ui = v(C)

}
.

Given an outcome x ∈ X, we denote by P(x) the projection to its first component, that

is, the coalition structure, and by u(x) the projection to its second component, that is, the

payoff vector. We can thus write x = (P(x), u(x)). The set X is non-empty since it always

contains the outcome x where N is partitioned into singletons, so P(x) = 〈N〉, and each

player i ∈ N receives the payoff v({i}).
Kóczy and Lauwers (2007) define the notion of outsider-independent dominance, to

which we will refer as weak dominance in this paper.
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Definition 2.1. An outcome y ∈ X weakly dominates an outcome x ∈ X by deviating

coalition D if

• P(y) = {D} ∪ 〈R(D,P(x))〉 ∪ O(D,P(x)),

and

• for every i ∈ D, ui(y) ≥ ui(x) and there exists i ∈ D such that ui(y) > ui(x),

• for every i ∈ O(D,P(x)), ui(y) = ui(x).

After a coalition D deviates, the residual players fall apart into singletons, whereas the

outsiders stay in their original coalitions. Utilities of outsiders are not affected, whereas

the utilities of the deviating players all weakly improve and at least one deviating player

strictly improves. Since y ∈ X, it follows from Definition 2.1 that
∑

i∈D ui(y) = v(D) and,

for every i ∈ R(D,P(x)), ui(y) = v({i}). The treatment of residual players corresponds

to the γ-model of Hart and Kurz (1983). The property that outsiders are not affected

by a coalitional deviation is also referred to as coalitional sovereignty in Konishi and Ray

(2003), Ray and Vohra (2014, 2015), and Herings, Mauleon, and Vannetelbosch (2017).

One of the most prominent set-valued solution concepts for coalition function form

games is the coalition structure core as defined in Aumann and Drèze (1974).

Definition 2.2. The coalition structure core (CSC) of (N, v) is the set of outcomes x ∈ X
such that, for every coalition C ∈ N ,∑

i∈C

ui(x) ≥ v(C).

In words, the coalition structure core gives to the members of each coalition at least the

payoff they can obtain by forming that coalition. It is easy to provide examples where the

coalition structure core is empty.

Let some outcome x ∈ X be given. The set of all outcomes that weakly dominate x

together with outcome x itself is denoted by g(x), so

g(x) = {x} ∪ {y ∈ X | there is D ∈ N such that y weakly dominates x by D}.

We define the two-fold composition of g by g2(x) = {z ∈ X | ∃y ∈ g(x) such that z ∈
g(y)}. By induction, we define the k-fold iteration gk(x) as the subset of X that contains

all outcomes obtained by a composition of dominance correspondences of length k ∈ N,

that is, gk(x) = {z ∈ X | ∃y ∈ gk−1(x) such that z ∈ g(y)}. Observe that for every k, ` ∈ N
if k ≤ `, then gk(x) ⊆ g`(x). We define the set of all outcomes that can be reached from x

by a finite number of dominations by gN(x), so

gN(x) =
⋃
k∈Ng

k(x).
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The outcomes x, y ∈ Π are payoff equivalent if u(x) = u(y). The notion of payoff equivalence

partitions the set of outcomes into equivalence classes. We denote the equivalence class

containing x by [x]. Kóczy and Lauwers (2007) say that the outcome y ∈ X is accessible

from the outcome x ∈ X if y ∈ gN(x) or y is payoff equivalent to x. The set of outcomes

that are accessible from x in the sense of Kóczy and Lauwers (2007) can therefore be

written as

g̃N(x) = gN(x) ∪ [x].

The correspondence g̃N may fail to be transitive. As we are considering outcomes accessible

from accessible outcomes it is natural to consider its transitive version:

g̃(x) = g(x) ∪ [x].

We define the two-fold composition of g̃ by g̃2(x) = {z ∈ X | ∃y ∈ g̃(x) such that z ∈
g̃(y)}. By induction, we define the k-fold iteration g̃k(x) as the subset of X that contains

all outcomes obtained by a composition of dominance correspondences of length k ∈ N,

that is, g̃k(x) = {z ∈ X | ∃y ∈ g̃k−1(x) such that z ∈ g̃(y)}. Observe that for every k, ` ∈ N
if k ≤ `, then g̃k(x) ⊆ g̃`(x). We define the set of all outcomes that can be reached from x

by a finite number of dominations and payoff equivalences by g̃N(x), so

g̃N(x) =
⋃
k∈Ng̃

k(x).

It is easily seen that

g̃N(x) = (g̃)N (x) ⊇ g̃N(x) = gN(x) ∪ [x].

In this paper, we say that the outcome y ∈ X is accessible from the outcome x ∈ X if

y ∈ g̃N(x).

Definition 2.3. Let (N, v) be a coalition function form game. The set ∆̃ ⊆ X is a payoff-

equivalence minimal dominant set (PEMDS) if it satisfies the following three conditions:

1. Closure: For every x ∈ ∆̃, g̃N(x) ⊆ ∆̃.

2. Accessibility: For every x /∈ ∆̃, g̃N(x) ∩ ∆̃ 6= ∅.

3. Minimality: There is no set ∆̃′ ( ∆̃ that satisfies Conditions 1 and 2.

We argue next that multiple payoff-equivalence minimal dominant sets cannot co-exist.

The argument relies heavily on the transitivity of g̃N.

Theorem 2.4. A coalition function form game (N, v) can have at most one PEMDS.
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Proof. Let ∆̃1 and ∆̃2 both be a PEMDS of (N, v). We argue that ∆̃1∩∆̃2 satisfies Closure

and Accessibility, which by Minimality implies that ∆̃1 = ∆̃2.

To show Closure for ∆̃1 ∩ ∆̃2, let x ∈ ∆̃1 ∩ ∆̃2 and y ∈ g̃N(x). Then given that x ∈ ∆̃1

and ∆̃1 satisfies Closure, it must be that y ∈ ∆̃1. Also given that x ∈ ∆̃2 and ∆̃2 satisfies

closure, it must be that y ∈ ∆̃2. This implies that y ∈ ∆̃1 ∩ ∆̃2 as was to be shown.

For Accessibility, take any x /∈ ∆̃1 ∩ ∆̃2. There are three cases to consider.

Case 1. x ∈ ∆̃1 \ ∆̃2. Then, by Accessibility of ∆̃2, there is y ∈ ∆̃2 such that y ∈ g̃N(x).

By Closure of ∆̃1, we have that y ∈ ∆̃1. This means that y ∈ ∆̃1 ∩ ∆̃2, which is what we

needed to show.

Case 2. x ∈ ∆̃2 \ ∆̃1. The proof is symmetric to Case 1 with ∆̃1 and ∆̃2 interchanged.

Case 3. x ∈ X \ (∆̃1 ∪ ∆̃2). We know, by Accessibility of ∆̃1, that there is y ∈ ∆̃1 such

that y ∈ gN(x). If y ∈ ∆̃2, we are done. If not, then we know from Case 1 that there is

z ∈ ∆̃1 ∩ ∆̃2 such that z ∈ g̃N(y). It follows from transitivity of g̃N that z ∈ g̃N(x).

Kóczy and Lauwers (2007) also assert existence of a PEMDS for a coalition function

form game (N, v). Unfortunately, Kóczy and Lauwers (2007) do not use Accessibility con-

sistently, for most of the paper the correspondence gN is used interchangeably with g̃N.

Most notably Theorem 4 of Kóczy and Lauwers (2007) is false. The problematic assertion

is that there exists a natural number τ ∈ N such that for all outcomes x, y ∈ X we have

that y ∈ g̃N(x) if and only if y ∈ gτ (x).

The following is a counterexample.

Example 2.5. Consider a game with N = {1, 2} and v(C) = |C| for all C ⊆ N and

the outcome x where P(x) = {N} and u(x) = (1, 1). This is an element of the coalition

structure core CSC and therefore g(x) = gN(x) = {x}. On the other hand the outcome y

where P(y) = 〈N〉 and u(y) = u(x) is payoff-equivalent to x and is therefore, by definition,

accessible. Contrary to the assertion of the aforementioned Theorem, we have that y ∈
g̃N(x) ⊆ g̃N(x), whereas y /∈ gN(x).

3 The Minimal Dominant Set

It is clear that payoff-equivalence causes problems, while it turns out that it is completely

superfluous and can be eliminated. In this section we drop pay-off equivalence from the

dominance correspondence. Other papers in the literature studying the payoff-equivalence

minimal dominant set have done so as well, see for instance Yang (2011, 2020). This makes

also sense from a conceptual point of view. For a new coalition to form, at least one of the

coalition members should improve, which is not the case under payoff-equivalence.
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Definition 3.1. Let (N, v) be a coalition function form game. The set ∆ ⊆ X is a minimal

dominant set (MDS) if it satisfies the following three conditions:

1. Closure: For every x ∈ ∆, gN(x) ⊆ ∆.

2. Sequential weak dominance: For every x /∈ ∆, gN(x) ∩∆ 6= ∅.

3. Minimality: There is no set ∆′ ( ∆ that satisfies Conditions 1 and 2.

Definition 3.1 is obtained from Definition 2.3 by replacing the correspondence g̃N by

gN. The only difference between these correspondences is the absence of payoff-equivalence

in the latter, so for every x ∈ X it holds that gN(x) ⊆ g̃N(x).

The proof of Theorem 4 of Kóczy and Lauwers (2007) relies on a construction where

the set of outcomes are partitioned into similarity classes. Similarity classes are closed

and convex sets of outcomes determined by the coalitional deviations they are subject

to. Notably, two distinct, payoff-equivalent outcomes belong to different similarity classes

and their payoff-equivalence is not taken into account at all. As a result, if we replace

Accessibility with Sequential weak dominance, Theorem 4 of Kóczy and Lauwers (2007)

holds.

Theorem 3.2. Let (N, v) be a game. Then there exists a natural number τ ∈ N such that

for all outcomes x, y ∈ X we have that y ∈ gN(x) if and only if y ∈ gτ (x).

While this result presents no explicit bounds, Yang (2011) shows that elements of the

MDS can be reached in a number of steps that is quadratic in n.

Next, we can proceed as in Kóczy and Lauwers (2007) to show the following result.

Theorem 3.3. A coalition function form game (N, v) has a unique MDS. If the coalition

structure core of the game is non-empty, then it is equal to the MDS.

It follows from a counterexample in Bhattacharya and Ziad (2006) that Theorem 3.3

cannot be extended to the non-transferable utility case; Kóczy (2018, p 99) conjectures the

same for partition function form games.

What is the effect of the removal of payoff equivalence on the solution concept? Note

that for a generic coalition function form game (N, v), if P ,Q ∈ Π are different partitions

of N, so P 6= Q, then
∑

C∈P v(C) 6=
∑

C∈Q v(C).

Theorem 3.4. Let (N, v) be a coalition function form game such that, for every P ,Q ∈ Π

such that P 6= Q,
∑

C∈P v(C) 6=
∑

C∈Q v(C). Then ∆ is an MDS of (N, v) if and only if it

is a PEMDS of (N, v).

Proof. The assumption of Theorem 3.4 implies that payoff equivalences cannot occur.

Therefore, it holds that gN = g̃N.
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Theorem 3.4 establishes that for generic coalition function form games, the PEMDS

coincides with the MDS.

Apart from the generic case where multiple partitions with the same total payoff do

not exist, there is another interesting class of coalition function form games where the

predictions of PEMDS and MDS coincide, that is, coalition function form games with a

non-empty coalition structure core.

Theorem 3.5. Let (N, v) be a coalition function form game with a non-empty coalition

structure core. Then the PEMDS of (N, v) is equal to the coalition structure core.

Proof. We argue first that any element of the coalition structure core belongs to a PEMDS.

Assume that ∆̃ is a PEMDS. Let x ∈ CSC. It holds that gN(x) = {x}. For every y ∈ [x],

it holds that y belongs to CSC, so gN(y) = {y} and therefore g̃N(x) = [x].

Suppose x /∈ ∆̃. Then, we have g̃N(x) ∩ ∆̃ = [x] ∩ ∆̃ 6= ∅. Closure of ∆̃ now implies

[x] ⊆ ∆̃, contradicting x /∈ ∆̃. Consequently, it holds that x ∈ ∆̃.

We argue that CSC satisfies Closure and Accessibility, which by Minimality implies

that ∆̃ = CSC. We already showed that for every x ∈ CSC we have g̃N(x) = [x]. This

shows Closure.

By Theorem 3.3, it holds that the MDS of (N, v) is equal to CSC, so CSC satisfies

Sequential weak dominance and therefore Accessibility.

It follows from Theorems 3.3 and 3.5 that the MDS and the PEMDS coincide for

coalition function form games with a non-empty coalition structure core.

We now present an example where the MDS is a proper subset of the PEMDS.

Example 3.6. Let (N, v) be the three-player simple majority game, so N = {1, 2, 3} and

v({1, 2}) = v({1, 3}) = v({2, 3}) = v(N) = 1, whereas the worth of any other coalition

is equal to zero. It holds that CSC = ∅. Let M = {{1, 2}, {1, 3}, {2, 3}} be the set of

minimal winning coalitions. Consider the set F ⊆ X defined by

F = {x ∈ X | P(x) ∩M 6= ∅},

so in payoff terms the set F is given by the facets of the unit simplex. It is easily verified

that F satisfies Closure with respect to gN and Accessibility. Moreover, for every x ∈ F, it

holds that gN(x) = F, so there is no proper subset of F that satisfies Closure with respect

to gN and Accessibility. It follows that the MDS of (N, v) is equal to F. The prediction of

the MDS is that a minimal winning coalition forms and one player becomes a singleton. It

is excluded that the grand coalition forms.

The set F is not a PEMDS, since outcomes which are payoff equivalent to outcomes

in F may not belong to F themselves. For instance, for every x ∈ F it holds that y ∈ X
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defined by P(y) = {N} and u(y) = u(x) is payoff equivalent to x, but is not part of F. We

define the set F̃ ⊆ X by

F̃ = F ∪ {x ∈ X | P(x) = {N} and there exists i ∈ N such that ui(x) = 0}
= {x ∈ X | P(x) ∩ (M∪ {N}) 6= ∅ and there exists i ∈ N such that ui(x) = 0}.

It is easily verified that the PEMDS of (N, v) is given by F̃ .

Example 3.6 presents an example where the PEMDS is different from the MDS, but

the same when projected to the space of payoffs. This turns out to be a general feature of

so-called proper simple games as we will formally state in Theorem 5.5. It is natural to ask

if the property holds in general: should we ignore partitions and focus on the payoff vectors

only, do we have equivalence? The next example answers this question in the negative.

{{1}, {2, 3}, {4, 5}}
{{1, 2}, {3}, {4, 5}}

( 1
3
, 2
3
, 0, 1

2
, 1
2
)

{{1, 3}, {2}, {4, 5}}, ( 2
3
, 0, 1

3
, 1
2
, 1
2
)

MWDS

{N}

(0, 1
3
, 2
3
, 1
2
, 1
2
)

{{1, 2}, {3}, {4}, {5}} ( 1
3
, 2
3
, 0, 0, 0)

{N} ( 1
2
, 1, 1

3
, 1
12
, 1
12
)

MDS

{{1}, {2}, {3}, {4}, {5}} (0, 0, 0, 0, 0) X

Figure 1: An illustration of Example 3.7. Arrows indicate weak dominances, dashed lines

payoff equivalence. Not all weak dominances are displayed.

Example 3.7. Consider the following 5-player example. Coalitions {1, 2} , {1, 3} and {2, 3}
have a worth of 1; so does coalition {4, 5}. The grand coalition {1, 2, 3, 4, 5} has a worth

of 2.

The MDS equals the union of the facets of the simplex on players {1, 2, 3} , with one

of the two-player subsets forming as a coalition, plus an arbitrary payoff division of the

worth of 1 of coalition {4, 5}. The grand coalition does not have a profitable deviation from

this, so is not part of the MDS. On the other hand, it is part of a PEMDS ∆̃ by payoff

equivalence. Now at least one of the coalitions {1, 2} , {1, 3}, or {2, 3} can deviate, and

players 4 and 5 become singletons. Now the grand coalition can deviate with a payoff vector

different from any payoff vector in the MDS. One can show that the PEMDS contains much

more of the outcomes although not all – with one trivial example indicated in Figure 1.
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4 The Myopic Stable Set

Demuynck, Herings, Saulle, and Seel (2019) introduce the solution concept of the myopic

stable set for general social environments. They then use the concept to study specific

social environments coming from applications like coalition function form games, matching

models, networks, and non-cooperative games. We now explain how the solution concept

is defined when applied to coalition function form games.

Definition 4.1. An outcome y ∈ X dominates an outcome x ∈ X by deviating coalition

D if

• P(y) = {D} ∪ 〈R(D,P(x))〉 ∪ O(D,P(x)),

and

• for every i ∈ D, ui(y) > ui(x),

• for every i ∈ O(D,P(x)), ui(y) = ui(x).

The only difference between Definitions 2.1 and 4.1 is that the condition that at least one

member of the deviating coalition strictly improves has been replaced by the requirement

that all members of the deviating coalition strictly improve.

Let some outcome x ∈ X be given. The subset of X consisting of all outcomes that

dominate x together with outcome x itself is denoted by f(x), so

f(x) = {x} ∪ {y ∈ X | there is D ∈ N such that y dominates x by D}.

As before, we define the two-fold composition of f by f 2(x) = {z ∈ X|∃y ∈ f(x) such that z ∈
f(y)}. By induction, we define the k-fold iteration fk(x) as the subset of X that contains

all outcomes obtained by a composition of dominance correspondences of length k ∈ N,

that is, fk(x) = {z ∈ X|∃y ∈ fk−1(x) such that z ∈ f(y)}. Observe that for every k, ` ∈ N
if k ≤ `, then fk(x) ⊆ f `(x). We define the set of all outcomes that can be reached from

x by a finite number of dominations by fN(x), so fN(x) =
⋃
k∈Nf

k(x).

An outcome y is said to asymptotically dominate the outcome x if starting from x, it

is possible to get arbitrarily close to y in a finite number of dominations. We define the

metric d on X by setting for every x, y ∈ X,

d(x, y) = 1{P(x)6=P(y)} + ‖u(x)− u(y)‖∞,

where 1 is the indicator function and ‖ · ‖∞ is the infinity norm.

Notice that payoff-equivalent outcomes with different underlying partitions are not near

due to the first term of the metric.
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Definition 4.2. An outcome y ∈ X asymptotically dominates an outcome x ∈ X if for

every ε > 0 there exists a number k ∈ N and an outcome z ∈ fk(x) such that d(y, z) < ε.

We denote by f∞(x) the set of all outcomes in X that asymptotically dominate x.

Formally,

f∞(x) = {y ∈ X|∀ε > 0, ∃k ∈ N,∃z ∈ fk(x) : d(y, z) < ε}.

It is easy to see that the set f∞(x) coincides with the closure of the set fN(x).

We are now ready to define the myopic stable set, abbreviated as MSS.

Definition 4.3. Let (N, v) be a coalition function form game. The set M ⊆ X is a myopic

stable set (MSS) if it is closed and satisfies the following three conditions:

1. Deterrence of external deviations: For every x ∈M, f(x) ⊆M.

2. Asymptotic external stability: For every x /∈M, f∞(x) ∩M 6= ∅.

3. Minimality: There is no closed set M ′ (M that satisfies Conditions 1 and 2.

Let M be an MSS. Deterrence of external deviations requires that no coalition can

profitably deviate to an outcome outside M . Asymptotic external stability requires that

any outcome outside M is asymptotically dominated by an outcome in M . Hence, from

any outcome outside of M it is possible to get arbitrary close to an outcome in M by a

finite number of dominations. Observe that an empty set would necessarily violate external

stability, so any MSS is non-empty. Minimality imposes that there is no smaller closed

set of outcomes that satisfies Deterrence of external deviations and Asymptotic external

stability.

Apart from the use of the dominance correspondence instead of the weak dominance

correspondence, there are three differences between the MSS and the MDS. The require-

ment of Closure for MDS has been replaced by Deterrence of external deviations in MSS.

Since “for every x ∈M, f(x) ⊆M” implies “for every x ∈M, fN(x) ⊆M,” this difference

reduces to the use of the dominance correspondence instead of the weak dominance corre-

spondence. The second difference is that the requirement of Sequential weak dominance

in MDS is based on the finitely iterated dominance correspondence, whereas Asymptotic

external stability in MSS is based on the asymptotic dominance correspondence. Finally,

the MSS is a closed set by definition.

Demuynck, Herings, Saulle, and Seel (2019) show the following result.

Theorem 4.4. A coalition function form game (N, v) has a unique MSS. If the coalition

structure core of the game is non-empty, then it is equal to the MSS.
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As a consequence of Theorems 3.3, 3.5, and 4.4, we conclude that the MDS, the PEMDS,

and the MSS coincide whenever CSC 6= ∅. Example 3.6 shows that in general MDS and

PEMDS are not the same. We next argue that in Example 3.6, the MSS coincides with

the MDS.

Example 4.5. As in Example 3.6, let (N, v) be the three-player simple majority game,

so N = {1, 2, 3} and v({1, 2}) = v({1, 3}) = v({2, 3}) = v(N) = 1, whereas the worth of

any other coalition is equal to zero. Recall that M = {{1, 2}, {1, 3}, {2, 3}} is the set of

minimal winning coalitions. It follows from Theorem 4.5 in Demuynck, Herings, Saulle,

and Seel (2019) that the MSS is equal to the set

F = {x ∈ X | P(x) ∩M 6= ∅},

so the MSS coincides with the MDS.

The equivalence of the MSS and the MDS holds in general; this is the topic of the next

section.

5 Equivalence

Before showing the relation between the MSS and MDS, we first introduce another concept,

the weak dominance MSS, which results from replacing the dominance correspondence in

the MSS by the weak dominance correspondence.

Definition 5.1. Let (N, v) be a coalition function form game. The set W ⊆ X is a

weak dominance myopic stable set (weak dominance MSS) if it is closed and satisfies the

following three conditions:

1. Deterrence of weak external deviations: For every x ∈ W , g(x) ⊆ W .

2. Asymptotic weak external stability: For every x /∈ W, g∞(x) ∩W 6= ∅.

3. Minimality: There is no closed set W ′ ( W that satisfies Conditions 1 and 2.

The weak dominance MSS has also been studied in Demuynck et al. (2019) and it is

explained there how most results established for the MSS carry over to the weak dominance

MSS.

We show first that the concepts of MSS and weak dominance MSS are equivalent.

To do so, we need two lemmas first. The first one makes clear that Asymptotic ex-

ternal stability, Asymptotic weak external stability, and Sequential weak dominance are

equivalent.
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Lemma 5.2. Let (N, v) be a coalition function form game. For every x ∈ X it holds that

f∞(x) = g∞(x) = gN(x).

Proof. Let x ∈ X.
Lemma 9 in Kóczy and Lauwers (2007) states that gN(x) is a closed set, so g∞(x) =

gN(x).

Since f(x) ⊆ g(x), it follows immediately that f∞(x) ⊆ g∞(x) = gN(x).

To show the reverse inclusion, let some y ∈ gN(x) be given, so there exists a sequence

of outcomes (x0, . . . , x`) such that, for every k = 1, . . . , `, xk ∈ f(xk−1). For k = 1, . . . , `,

let Dk be the deviating coalition that changes the outcome from xk−1 to xk and P k =

P (Dk,P(xk−1)) be the partners’ set of Dk in P(xk−1). We also define Rk = P k \Dk and

Ok = N \ P k as the set of residual players and outsiders, respectively. We have that

ui(x
k) = v({i}), i ∈ Rk,

ui(x
k) = ui(x

k−1), i ∈ Ok.

We define W k ⊂ Dk to be the, possibly empty, proper subset of Dk consisting of players

that only weakly improve when moving from outcome xk−1 to outcome xk, so for every

i ∈ W k it holds that ui(x
k−1) = ui(x

k). We define

δ = min
k∈{1,...,`}

min
i∈Dk\Wk

ui(x
k)− ui(xk−1),

ε′ = min{δ, ε},

so δ is the smallest improvement of any of the strictly improving players involved in any

move along the sequence. It holds that δ > 0 and therefore that ε′ > 0. For k ∈ {0, . . . , `},
define

νk =
n2k

n2`+1
.

We define e(W k) = 0 if W k = ∅ and e(W k) = 1 otherwise. We use the sequence

(x0, x1, . . . , x`) of outcomes to define a new sequence (x̃0, x̃1, . . . , x̃`) of outcomes by setting

x̃0 = x0 and, for every k ∈ {1, . . . , `},

P(x̃k) = P(xk),

ui(x̃
k) =


ui(x

k) + ε′νk
|Dk\Wk|
|Wk| , i ∈ W k,

ui(x
k)− ε′νke(W k), i ∈ Dk \W k,

ui(x
k) = v({i}), i ∈ Rk,

ui(x̃
k−1), i ∈ Ok.

Notice that the first line does not entail a division by zero, since if i ∈ W k, then W k 6= ∅.
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Compared to the sequence (x0, x1, . . . , x`), the sequence (x̃0, x̃1, . . . , x̃`) is such that

each strictly improving player in Dk \ W k donates an amount ε′νk/|W k| to each of the

players in W k whenever the latter set is non-empty. It is also important to observe that

the fraction νk is an n2 multiple of νk−1 and that ν` = 1/n.

We show first by induction that, for every k ∈ {0, . . . , `}, x̃k ∈ X. Obviously, it holds

that x̃0 = x0 ∈ X. Assume that, for some k ∈ {1, . . . , `}, x̃k−1 ∈ X. We show that x̃k ∈ X.

It holds that

ui(x̃
k) > ui(x

k) ≥ v({i}), i ∈ W k,

ui(x̃
k) ≥ ui(x

k−1) + δ − ε′νk > ui(x
k−1) + δ − ε′ ≥ ui(x

k−1) ≥ v({i}), i ∈ Dk \W k,

ui(x̃
k) = v({i}), i ∈ Rk,

ui(x̃
k) = ui(x̃

k−1) ≥ v({i}), i ∈ Ok,

where the very last inequality follows from the induction hypothesis. Moreover, for every

C ∈ P(xk), it holds that either C = Dk and W k = ∅, so∑
i∈C

ui(x̃
k) =

∑
i∈Dk

ui(x
k) = v(C),

or C = Dk and W k 6= ∅, so∑
i∈C

ui(x̃
k) =

∑
i∈Wk

(
ui(x

k) + ε′νk
|Dk \W k|
|W k|

)
+

∑
i∈Dk\Wk

(
ui(x

k)− ε′νk
)

=
∑
i∈Dk

ui(x
k) = v(C),

or C = {i′} with i′ ∈ Rk and∑
i∈C

ui(x̃
k) = ui′(x̃

k) = ui′(x
k) = v({i′}) = v(C),

or C ⊆ Ok, so C ∈ P(x̃k−1), and∑
i∈C

ui(x̃
k) =

∑
i∈C

ui(x̃
k−1) = v(C),

where the last equality makes use of the induction hypothesis. We have now completed

the proof of the fact that for every k ∈ {0, . . . , `}, x̃k ∈ X.
We show next by induction that, for every k ∈ {0, . . . , `}, and for every i ∈ N ,

|ui(x̃k)− ui(xk)| ≤ ε′νk(n− 1).

Obviously, for every i ∈ N , it holds that |ui(x̃0)− ui(x0)| = 0 ≤ ε′ν0(n− 1). Assume that,

for some k ∈ {1, . . . , `}, for every i ∈ N , |ui(x̃k−1) − ui(xk−1)| ≤ ε′νk−1(n − 1). We show
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that, for every i ∈ N , |ui(x̃k) − ui(xk)| ≤ ε′νk(n − 1). If i ∈ W k, then W k 6= ∅, and the

statement follows from the observation that

0 ≤ ui(x̃
k)− ui(xk) = ε′νk

|Dk\Wk|
|Wk| ≤ ε′νk(n− 1).

If i ∈ Dk \W k, then we have that

0 ≥ ui(x̃
k)− ui(xk) ≥ −ε′νk ≥ −ε′νk(n− 1).

If i ∈ Rk, then |ui(x̃k)− ui(xk)| = 0. If i ∈ Ok, then it holds that

|ui(x̃k)− ui(xk)| = |ui(x̃k−1)− ui(xk−1)| ≤ ε′νk−1(n− 1) < ε′νk(n− 1),

where the first inequality makes use of the induction hypothesis and the last inequality of

the fact that νk−1 < νk.

Let some k ∈ {1, . . . , `} and some i ∈ Dk be given. We show that ui(x̃
k) > ui(x̃

k−1). If

i ∈ W k, then it holds that

ui(x̃
k) = ui(x

k) + ε′νk
|Dk \W k|
|W k|

= ui(x
k−1) + ε′νk

|Dk \W k|
|W k|

≥ ui(x̃
k−1)− ε′νk−1(n− 1) + ε′νk

1

n− 1

> ui(x̃
k−1),

where the strict inequality uses that νk = n2νk−1. If i ∈ Dk \W k, then it holds that

ui(x̃
k) ≥ ui(x

k)− ε′νk
≥ ui(x

k−1) + δ − ε′νk
≥ ui(x̃

k−1)− ε′νk−1(n− 1) + δ − ε′n2νk−1

> ui(x̃
k−1),

where the strict inequality uses the facts that δ ≥ ε′ and

(n2 + (n− 1))νk−1 < 2n2νk−1 ≤ 2νk ≤ 1.

Combining the statements proven so far, it follows that x̃` ∈ f `(x0).
The proof is completed by observing that d(x̃`, x`) < ε since P(x̃`) = P(x`) and, for

every i ∈ N ,

|ui(x̃`)− ui(x`)| ≤ ε′ν`(n− 1) < ε′ ≤ ε.
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In the proof of Theorem 4.4 in Demuynck, Herings, Saulle, and Seel (2019) it has been

shown that any element in CSC belonging to gN(x) is contained in f∞(x). The same proof

technique is used in the proof of Lemma 4.2 to extend this result and show that this does

not only apply to coalition structure core elements, but holds in general.

Example A.6 of the online supplement of Demuynck, Herings, Saulle, and Seel (2019)

considers a coalition function form game such that N = {1, 2, 3}, v({1, 2}) = 1, and

v({2, 3}) = 1. All other coalitions have a worth of 0. Thus, player 2 can choose between

player 1 and player 3 to form a two-person coalition generating a surplus equal to one. It

holds that CSC consists of only two states, y and y′, with equal payoffs, u(y) = u(y′) =

(0, 1, 0), and coalitional structures P(y) = {{1, 2}, {3}} and P(y′) = {{1}, {2, 3}}.
Consider an initial state x0 ∈ X such that P(x0) = {{1}, {2}, {3}} and u(x0) = (0, 0, 0).

It can be shown that any element x1 of fN(x0) is such that either P(x1) = {{1, 2}, {3}} and

u(x1) = (ε, 1−ε, 0) for some ε ∈ (0, 1) or P(x1) = {{1}, {2, 3}} and u(x1) = (0, 1−ε, ε) for

some ε ∈ (0, 1). In particular, it holds that fN(x0) does not contain an element of CSC. On

the contrary, it is immediately verified that both coalition structure core elements belong

to g(x0). It therefore holds that fN(x0) is not closed. The example shows that fN(x0) is

a proper subset of gN(x0). It is therefore impossible to extend Lemma 5.2 and obtain an

equivalence with fN(x) as well.

Theorem 5.3. A coalition function form game (N, v) has a unique weak dominance MSS.

It coincides with the MSS.

Proof. Let Y ⊆ X be any closed set of outcomes that satisfies Deterrence of external

deviations and Asymptotic external stability. We show that it satisfies Deterrence of weak

external deviations and Asymptotic weak external stability. The latter property follows

immediately from Lemma 5.2.

Suppose there is y ∈ Y such that g(y) \ Y 6= ∅. Let z ∈ g(y) \ Y and D ∈ N be such

that z weakly dominates y by D. Let j ∈ D be such that uj(z) > uj(y). If ui(z) > ui(y)

for every i ∈ D, then z ∈ f(y) \ Y, contradicting that Y satisfies Deterrence of external

deviations. It follows that there is at least one i ∈ D such that ui(z) = ui(y).

Since Y is closed and z /∈ Y, there is ε > 0 such that, for every y ∈ Y, d(y, z) > ε.

Moreover, ε can be taken sufficiently small to satisfy ε < zj − yj. We define z̃ ∈ X by

z̃j = zj − ε,
z̃i = zi + ε/(|D| − 1), i ∈ D \ {j},
z̃i = zi, i ∈ N \D.

It is easily verified that z̃ ∈ f(y). Since d(z, z̃) = ε, it holds that z̃ /∈ Y. We have obtained a

contradiction with the fact that Y satisfies Deterrence of external deviations. Consequently,
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it holds for every y ∈ Y that g(y) ⊆ Y, that is Y satisfies Deterrence of weak external

deviations.

Since any closed set of outcomes that satisfies Deterrence of external deviations and

Asymptotic external stability also satisfies Deterrence of weak external deviations and

Asymptotic weak external stability, we have that the weak dominance MSS coincides with

the MSS and is therefore unique by Theorem 3.4.

After having shown the equivalence of the MSS and the weak dominance MSS, we turn

to the relationship between the MSS and the MDS.

Theorem 5.4. The MSS and the MDS of a coalition function form game (N, v) coincide.

Proof. We show that the three conditions of Definitions 3.1 and 5.1 are equivalent and that

the MDS is a closed set, after which the result follows from Theorem 5.3.

Consider some set Y ⊆ X. The statement “for every x ∈ Y, g(x) ⊆ Y ” implies the

statement “for every x ∈ Y, gN(x) ⊆ Y.” Conversely, we have that for every x ∈ Y,

“gN(x) ⊆ Y ” implies “g1(x) = g(x) ⊆ Y .” Therefore, Closure and the Deterrence of weak

external deviations are equivalent.

By Lemma 5.2 Asymptotic external stability is equivalent to Sequential weak domi-

nance, therefore g∞(x) ∩ Y 6= ∅ is equivalent to gN(x) ∩ Y 6= ∅.
At last, Theorem 19 in Kóczy and Lauwers (2007) states that the MDS can be written

as a finite union of sets of outcomes called similarity classes. Each similarity class is defined

by a finite number of linear weak inequalities and is therefore closed. This implies that

the MDS is closed. The MDS is the smallest set satisfying Closure and Sequential weak

dominance, but then it is also the smallest closed set satisfying these properties. This

completes the proof.

The result of Theorems 5.3 and 5.4 imply that MDS, MSS, and weak dominance MSS

coincide for all coalition function form games. Moreover, they also coincide with the

PEMDS for important cases like generic coalition function form games (Theorem 3.4) and

coalition function form games with a non-empty coalition structure core (Theorem 3.5).

Example 3.6 shows that the coincide with PEMDS is not true in terms of outcomes for

the three-player simple majority game, but is so in terms of payoffs. We conclude by

generalizing the latter insight to the entire class of proper simple games.

Proper simple games are coalition function form games (N, v) such that v(N) = 1, for

every C ∈ N it holds that v(C) ∈ {0, 1}, and v(C) = 1 implies v(N \ C) = 0. Moreover,

for C,D ∈ N such that C ⊆ D, v(C) = 1 implies v(D) = 1. The collection of winning

coalitions of a proper simple game (N, v) is denoted by W = {C ∈ N | v(C) = 1}. A veto

player is a player that belongs to every winning coalition. The set of veto players is given
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by C∗ = ∩C∈WC. The coalition structure core of a proper simple game is non-empty if and

only if there are veto players, so C∗ 6= ∅.
Let (N, v) be a proper simple game. We define the sets of outcomes F and F̃ by

F =

{
CSC, if CSC 6= ∅,
{x ∈ X | P(x) ∩ (W \ {N}) 6= ∅, ∀C ∈ P(x) \W , |C| = 1}, if CSC = ∅,

F̃ =

{
CSC, if CSC 6= ∅,
{x ∈ X | P(x) ∩W 6= ∅, ∃i ∈ N such that ui(x) = 0}, if CSC = ∅.

It is easily verified that the definitions of F and F̃ are appropriate generalizations of the

sets as defined in Example 3.6. In case CSC = ∅, the difference between F and F̃ is that

outcomes where the grand coalition forms are included in the latter, as well as outcomes

where non-winning coalitions need not be singletons. In payoff terms, there is no difference

between F and F̃ . For instance, the requirement for F̃ that at least one player gets a

payoff of zero in case CSC = ∅ is also satisfied for F, since if x ∈ F then P(x) includes a

winning coalition different from the grand coalition and the remaining coalitions in P(x)

are required to be singletons. Any singleton coalition has a worth of zero, since otherwise

the corresponding player would be a veto player, which is excluded when CSC = ∅.
The next result shows that for proper simple games the MDS and the MSS is equal to

the set F and the PEMDS to the set F̃ , from which payoff equivalence easily follows.

Theorem 5.5. Let (N, v) be a proper simple game. The MDS and the MSS of (N, v)

are equal to F. The PEMDS of (N, v) is equal to F̃ . The set of payoffs supported by the

PEMDS, the MDS and the MSS coincide.

Proof. Assume first that CSC 6= ∅. By Theorems 3.3, 3.5, and 4.4, the MDS, PEMDS and

MSS are all equal to CSC.

Assume next that CSC 6= ∅. By Theorem 4.5 in Demuynck et al. (2019) it holds that

the MSS is equal to the set F. It now follows from Theorem 5.4 that the MDS is equal to

the set F.

We finally turn to the PEMDS. We show that the set F̃ is a closed cycle, that is, for

every x ∈ F̃ , it holds that g̃N(x) = F̃ . We also argue that F̃ satisfies Accessibility. It then

follows easily that the PEMDS is equal to F̃ .

The proof of Theorem 4.5 in Demuynck et al. (2019) establishes that, for every x ∈ F,
f∞(x) = F, and, for every x ∈ X \ F, f∞(x)∩ F 6= ∅. By Lemma 5.2 we then obtain that,

∀x ∈ F, gN(x) = F, (5.1)

∀x ∈ X \ F, gN(x) ∩ F 6= ∅. (5.2)

Since F ⊂ F̃ , it follows from (5.2) that F̃ satisfies Accessibility. To prove that F̃ is a closed

cycle, we proceed in two steps.
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Step 1. For every x ∈ F̃ , g̃N(x) ⊇ F̃ .

Let some x, y ∈ F̃ be given. We distinguish four cases.

Case 1. x, y ∈ F.
It holds that y ∈ gN(x) ⊆ g̃N(x).

Case 2. x ∈ F, y ∈ F̃ \ F.
It holds that either P(y) = {N} or P(y) contains a winning coalition C ⊂ N and a coalition

with at least two players that is not winning. In the former case, let i ∈ N be such that

ui(y) = 0 and define the outcome y′ ∈ X by P(y′) = {N \ {i}, {i}} and u(y′) = u(y). To

demonstrate that y′ is indeed an outcome, we show that N \ {i} is a winning coalition.

Suppose N \{i} is not a winning coalition. Then no subset of N \{i} is a winning coalition,

so every winning coalition involves player i. But then i is a veto player and the coalition

structure core of (N, v) is non-empty, a contradiction. Consequently, N \ {i} is a winning

coalition. In the latter case, define the outcome y′ ∈ X by P(y′) = {C} ∪ 〈N \ C〉 and

u(y′) = u(y). Since the complement of a winning coalition is not winning, it is obvious that

y′ is an outcome. In both cases, it follows that y′ ∈ [y], so y ∈ g̃(y′). Since x, y′ ∈ F, we

have by (5.1) that y′ ∈ gN(x). We conclude that y ∈ g̃N(x).

Case 3. x ∈ F̃ \ F, y ∈ F.
By the same argument as in Case 2, there is x′ ∈ F such that x′ ∈ [x], so x′ ∈ g̃(x). Since

x′, y ∈ F, we have by (5.1) that y ∈ gN(x). We conclude that y ∈ g̃N(x).

Case 4. x ∈ F̃ \ F, y ∈ F̃ \ F.
By the same argument as in Case 2, there is x′ ∈ F such that x′ ∈ [x] and there is y′ ∈ F
such that y′ ∈ [y]. Since x′, y′ ∈ F, we have by (5.1) that y′ ∈ gN(x′). Since x′ ∈ g̃(x),

y′ ∈ gN(x′) and y ∈ g̃(y′), we conclude that y ∈ g̃N(x).

Step 2. For every x ∈ F̃ , g̃N(x) ⊆ F̃ .

It is sufficient to show that, for every x ∈ F̃ , g̃(x) ⊆ F̃ . Let some x ∈ F̃ and some

y ∈ g̃(x) be given. We distinguish four cases.

Case 1. x ∈ F, y ∈ g(x).

It holds that y ∈ gN(x) = F, where the equality follows from (5.1).

Case 2. x ∈ F, y ∈ [x].

Since P(x) ∩ (W \N) 6= ∅, there exists i ∈ N such that ui(x) = 0 and P(y) must contain

a winning coalition. It follows that y ∈ F̃ .
Case 3. x ∈ F̃ \ F, y ∈ g(x).

It holds that either P(x) = {N} or P(x) contains a winning coalition C ⊂ N and a

coalition with at least two players that is not winning. In the former case, y = x ∈ F̃ \ F
or there is D ∈ N such that y weakly dominates x by D. The definition of weak dominance

implies that D is a proper subset of N, so P(y) = {D} ∪ 〈N \D〉 and therefore y ∈ F. In

the latter case y = x ∈ F̃ \ F or there is D ∈ W such that y weakly dominates x by D, so
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D ∈ P(y)∩W . By the definition of weak dominance it follows that C \D 6= ∅, so ui(y) = 0

for every i ∈ C \D. We have that y ∈ F̃ .
Case 4. x ∈ F̃ \ F, y ∈ [x].

It clearly holds that P(y)∩W 6= ∅ and there exists i ∈ N such that ui(y) = 0, so y ∈ F̃ .

6 Conclusion

Since the coalition structure core of a coalition function form game may be empty, the lit-

erature has proposed non-empty generalizations like the payoff-equivalence minimal dom-

inant set in Kóczy and Lauwers (2007) and the myopic stable set in Demuynck et al.

(2019). An attractive feature of the myopic stable set is that it coincides with the coalition

structure core whenever the coalition structure core is non-empty and provides a unique

non-empty prediction otherwise. Kóczy and Lauwers (2007) make the same assertion for

the payoff-equivalence minimal dominant set. Unfortunately, we identify some problems in

the original definition of the payoff-equivalence minimal dominant set, correct them, and

also suggest the minimal dominant set as an alternative. The minimal dominant set is

shown to coincide with the coalition structure core whenever the coalition structure core is

non-empty and provide a unique non-empty prediction otherwise. Both the myopic stable

set and the minimal dominant set admit a dynamic interpretation in terms of coalitions

that deviate with some probability whenever they can improve the utility of their members.

The minimal dominant set is a minimal set satisfying Closure and Sequential weak

dominance. The myopic stable set is a minimal closed set satisfying Deterrence of external

deviations and Asymptotic external stability. Contrary to the minimal dominant set,

the myopic stable set requires every member of a deviating coalition to improve strictly.

Otherwise, it can be shown that there is no substantial difference between Closure and

Deterrence of external deviations. Sequential weak dominance requires that from any

outcome outside the minimal dominant set it is possible to attain an outcome in the

minimal dominant set by a finite number of weak dominations, whereas asymptotic external

stability requires that from any outcome outside the myopic stable set it is possible to get

arbitrary close to an outcome in the myopic stable set by a finite number of dominations.

Finally, a myopic stable set is closed by definition, whereas no such requirement is made

for the minimal dominant set.

The main result of the paper is that despite the subtle differences in the definition,

the minimal dominant set is equivalent to the myopic stable set. We also argue that for

important classes of coalition function form games, both concepts coincide with the payoff-

equivalence minimal dominant set. For instance, this is the case for generic coalition

function form games, coalition function form games with a non-empty coalition structure
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core, and, when as far as payoffs are concerned, proper simple games.
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Béal, S., É. Rémila, and P. Solal, 2013b, An optimal bound to access the core in TU-games,

Games and Economic Behavior 80, 1–9.

Bhattacharya, A., and A. Ziad, 2006, The core as the set of eventually stable outcomes: A

note, Games and Economic Behavior 54, 25–30.

Chen, B., S. Fujishige, and Z. Yang, 2016, Random decentralized market processes for

stable job matchings with competitive salaries, Journal of Economic Theory 165, 25–36.

Demuynck, T., P. J. J. Herings, R. D. Saulle, and C. Seel, 2019, The myopic stable set for

social environments, Econometrica 87, 111–138.

Diamantoudi, E., E. Miyagawa, and L. Xue, 2004, Random paths to stability in the room-

mate problem, Games and Economic Behavior 48, 18–28.

Green, J. R., 1974, The stability of Edgeworth’s recontracting process, Econometrica 42,

21–34.

Hart, S. and M. Kurz, 1983, Endogenous formation of coalitions, Econometrica 51, 1047–

1064.

Herings, P. J. J., A. Mauleon, and V. Vannetelbosch, 2017, Stable sets in matching prob-

lems with coalitional sovereignty and path dominance, Journal of Mathematical Eco-

nomics 71, 14–19.

Klaus, B. and F. Klijn, 2007, Paths to stability for matching markets with couples, Games

and Economic Behavior 58, 154–171.

20
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