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ABSTRACT 

Social connections that reach distant places are advantageous for individuals and firms by 
providing access to new skills and knowledge. However, systematic evidence on how firms 
work up global knowledge access is still missing. In this paper, we analyse how global work 
connections relate to differences in the skill composition of employees within companies. We 
gather survey data from 10% of workers in a local industry in Sweden and complement this 
with digital trace data to map co-worker networks and skill composition. This unique 
combination of data and features allows us to quantify global connections of employees and 
measure the degree of skill-similarity and skill-relatedness to co-workers. We find that the 
workers with extensive local networks typically have related skills to others in the region and 
to their co-workers. Workers with more global ties typically bring in less related skills to the 
region. These results provide new insights to the composition of skills within knowledge 
intensive firms by connecting the geography of networks contacts to the diversity of skills 
accessible through them. 
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Globális kapcsolatok, munkatársi kapcsolathálók és a 

dolgozók készségei 

LŐRINCZ LÁSZLÓ - GUILHERME KENJI CHIHAYA 

HANNÁK ANIKÓ - TAKÁCS DÁVID - LENGYEL BALÁZS 

RIKARD ERIKSSON 

ÖSSZEFOGLALÓ 

A nagy távolságokat áthidaló kapcsolatokon keresztül a cégek új készségekhez és ismeretekhez 

férhetnek hozzá, melyek előnyösek mind a dolgozók, mind a cégek számára. Egyelőre azonban 

nem találhatunk szisztematikus kutatásokat arról, hogy a globális tudáshoz való hozzáférés 

hogyan épül be vállalatok működésébe. E tanulmányban azt vizsgáljuk, hogy a globális 

kapcsolatok hogyan függnek össze a munkavállalók készségeinek szerkezetével a vállalatokon 

belül. Egy észak-svédországi klaszter dolgozói körében végzett kérdőíves felmérési adatait 

online kapcsolatháló adatokkal kapcsoltuk össze, így feltérképezve a munkatársak 

kapcsolathálóit és a készségeik jellemzőit. Az adatok e kombinációja segítségével 

számszerűsítjük a munkavállalók helyi globális kapcsolatait, és a készségeik hasonlóságának 

és közelségének mértékét. Eredményeink alapján a kiterjedt helyi hálózatokkal rendelkező 

munkavállalók inkább hasonló képességekkel rendelkeznek, mint a térség más munkavállalói 

és mint saját munkatársaik. A globálisabb kapcsolatokkal rendelkező munkavállalók viszont 

általában eltérőbb készségeket hoznak a régióba. Eredményeink új információt nyújtanak a 

tudásintenzív cégek készségeinek összetételéről, összekapcsolva a kapcsolathálók földrajzi 

vonatkozását az ezeken keresztül elérhető készségek diverzitásával. 
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1. INTRODUCTION 

Understanding the role of networks, in the various domains of social and economic life, is one 

of the central challenges of today’s science (e.g Borgatti et al. 2009, Lazer et al. 2009). Social 

networks are proven to inform us about how information spreads (Bakshy et al. 2012, Helbing 

et al. 2015), about the role of social influence on individual behaviour (Aral and Nicolaides, 

2017, Ugander et al. 2012), and the impact of social network structure on the performance of 

teams (Guimera et al. 2005, Vedres, 2017), among others. 

Despite recent years’ advancement in Big Data, most of our knowledge on social networks 

is still based on either small samples and case-studies, or large-scale analyses, thus neglecting 

the very geography inscribed in all socio-economic relations (Fernandez and Su, 2004). 

Nevertheless, the spatial structure of networks is decisive for understanding the role of 

networks in society. For example, social connections that reach distant places, compared to 

more local connections, are commonly perceived to be crucial in the generation of wealth for 

individuals, firms, and communities by providing access to opportunities and diverse 

knowledge (Bailey et al, 2019, Eagle et al, 2012, Eriksson and Lengyel, 2019, Fitjar and 

Rodriguez-Pose, 2011). However beneficial so-called “long ties” might be, these distant, and 

presumably weak, ties are highly dependent on the local capacity to absorb and internalize 

external information. Research on information flows and innovation, for example, show that 

distant ties tend to be most beneficial when also combined with cohesive local networks that 

can efficiently process complex information (Aral, 2016, Bathelt, et al. 2004, Granovetter, 

1973, Ter Wal et al. 2016, Tóth and Lengyel, 2019).  

The skills and knowledge of the workforce are defining assets of the firm and are directly 

related to internal and external collaboration. We have ample evidence that firm performance 

depends extensively on how skills of employees are combined (Abdulkareem et al, 2018, 

Boschma et al 2009; Dibiaggio et al 2014). The efficiency gains generated by division of labour 

in the firm and the consequent skill specialization naturally depend on the extent of knowledge 

resided in the firm that fosters specialization of employees (Neffke, 2019) but is 

counterbalanced by coordination costs that also increase with the extent of knowledge (Becker 

and Murphy 1992). Firm specialization itself is also seen as a net outcome of the advantages of 

focusing on special tasks in the firm and the costs of transferring this special knowledge to the 

outside world (Kogut and Zander 1993). Although transferring knowledge across firm 

boundaries usually comes with extra costs, inter-firm collaborations enable specialized firms 

to access complementary resources (Madhok 2002) or external sources of information (e.g., 

Tortoriello and Krackhardt, 2010). However, previous research on advice networks in local 

industries found that firms tend to collect knowledge from co-located firms that are similar to 

them in terms of knowledge or applied technologies (Balland et al. 2016, Juhász and Lengyel 



 
 

 

2018). It is widely accepted in economic geography that network formation driven by 

technological similarity threatens local economies with a scenario of lock-in that harms 

productivity and resilience (Boschma and Frenken, 2010, Grabher, 1993, Hassink, 2010). In 

this understanding, global links can feed local dynamics by adding new varieties of skills 

(Bathelt and Turi, 2011, Glückler, 2007). 

Previous research explored the combination of firms’ existing skills with new skills by 

investigating flows of skilled labour (Breschi and Lissoni 2009; Eriksson and Lindgren, 2009). 

The conclusive claim is that complementarity of incoming workers’ skills and the skills already 

present in the firm boost performance (Boschma et al, 2009, Csáfordi et al, 2020, Ter Wal et 

al. 2016). At the individual level, complementary skills within the firm is found to increase 

wages (Neffke 2019). In this body of literature, geography plays an important role because 

distant knowledge flows via labour mobility bring in additional novelty arising from the 

differences of geographical locations (Boschma et al 2009).  

Labour mobility is of course not independent from collaboration networks (Tzabbar et al. 

2018). As employees keep social relations with former co-workers, labour mobility creates 

social networks between firms. Recent contributions have quantified the probability of co-

worker relationships within regions (Lengyel and Eriksson 2017) and then showing that the 

internal networks in industry-regions largely determine whether more diverse or specialized 

linkages to other sectors and regions are promoting growth (Eriksson and Lengyel 2019). 

Hence, social relations, that is the main mechanism enhancing interactive learning (Arrow 

1962) and also tend to be the most localized type of interaction (Singh 2005), is likely to be 

highly influential in structuring the skill combination of firms. However, data limitations have 

so far prevented us from understanding how global knowledge access matches the skill-

composition of co-worker networks within firms. The literature on knowledge flows has neither 

assessed the origin of skills, nor gone beyond formal knowledge captured by educational 

degrees or industry experience.  

The aim of this paper is therefore to make a systematic analysis of how the structure and 

skill-content of social networks within firms match with local and global networks, 

respectively. To address this problem, we first investigate how the skills of employees are 

related in the advice network within firms and in an online social network across firms. 

Subsequently, we turn to the relationship between the geography of social networks and skills. 

The aim of the paper is summarized in two research questions. 

Research Question 1: Do co-workers’ skills predict information networks within firms? 

Research Question 2: Do workers who have extensive global connections offer new skills to 

the firm compared to workers who are embedded in local networks? 



 
 

 

Extensive previous research has assessed the evolution of organizational advice networks, 

arguing that tie formation in these networks is driven by status and individual characteristics 

(eg. Lazega and Van Duijn 1997, Agneessens and Wittek 2012), value similarity (Lazega et al. 

2012), or team membership (Brennecke and Rank 2016). However, extensive research on the 

skill structure within firms and advice networks is still missing. An exception is Brennecke and 

Rank (2017) that investigates how knowledge of inventors – measured by the technological 

profile of their patent portfolio – in a large firm influence their connections in their advice 

network. They find that knowledge similarity facilitates the formation of advice relations, while 

diverse individual knowledge increases the probability of being asked, and decreases the 

probability of asking advice from a colleague.  

Our contribution to this literature is twofold. First, we assess how skills of co-workers in 

general – without focusing on inventors – are related to advice networks in the firm and across 

firms in the region. Second, we explore the interplay of the distant social connections and the 

skill structure in local co-worker networks. 

This analysis is made possible by collecting survey data at the firm level and combine it 

with online data. We ask all employees of 16 ICT (Information, communication and 

technology) firms in Umeå, Sweden (representing 10% of the local industry) to name their co-

workers whom they collaborate with, socialize with, or ask professional advice from. 

Additionally, we asked for respondents’ permission to collect public information from their 

LinkedIn profiles. These data collection techniques allow us to quantify the geographical reach 

of the connections (Park et al. 2019) and to measure the skill complementarity of co-workers 

based on how similar and related their skills are (Neffke and Henning, 2013). 

We find that co-workers are more likely to be linked in the advice network if their skills are 

similar or related. A further result suggests that workers with extensive local networks typically 

have skills that are related to peers in the region and to co-workers within the firms. On the 

contrary, workers with a high fraction of distant ties have skills that are only loosely or not 

related to the skills of connections in the region and in the firm. Finally, we find that shared 

education abroad is more important for creating global ties than foreign work experience. 

These results provide new insights to the composition of skills within knowledge intensive 

firms by connecting the geography of networks and the similarity or diversity of skills. 

2. DATA AND METHODS 

We collected network data of 214 IT workers in 16 ICT firms using a workplace survey in Umeå, 

Sweden. Besides being part of a knowledge-intensive industry, the ICT cluster in Umeå is 

located in a relatively peripheral position (ca 1000 km north from the capital of Stockholm) 

and yet unusually connected to the rest of the world due to the existence of a fast-growing 



 
 

 

university. This makes it a good case for studying the importance of distant ties in providing 

skill diversity to local industries.  

Our firm sampling population consisted of all ICT firms with main offices in the Umeå 

region and more than 10 IT workers. A list of ICT companies with offices in the Umeå region 

was obtained from a local business incubator (Uminova). Of 77 companies in the list, 17 were 

excluded because they had less than 10 IT workers on their payroll and 24 were excluded 

because their main office were not in the Umeå region. Of the remaining 36 companies, 14 

declined to collaborate, and six companies wanted to collaborate but were not able to do so 

during our fieldwork period. This resulted in 16 out of 36 companies that matched the sample 

requirements being surveyed, yielding a 44.4% response rate on the firm level. Within firms, 

our response rate of employees exceeded 80% in every firm.  

The survey included questions on demography (gender, country of birth), on the job 

(current position at the firm, department, promotion), satisfaction with different aspects of the 

work, and on co-worker networks. In respect to network questions De Lange, Agneessens and 

Waege (2004) analysed 17 questions used in organizational network studies, and revealed 

three main dimensions using factor analysis: advice, social support – companionship, and 

friendship. Considering time constraints and sensitivity, we chose three questions that had 

similar logic, but tapping different dimensions: information, socialization, and cooperation, 

and asked them using the full roster method1.  In this study focus on advice networks (asking 

for professional advice), as advice is related to direct information channels.  

Based on respondents’ consent to access their LinkedIn profiles we collected detailed 

information about their skills, employment and education histories. Our LinkedIn 

subscription allowed us to collect similar data from the network connections of the 

respondents, including location. Due to some incomplete surveys and missing variables, we 

collected complete skills data for 150 respondents, and connections, education and work 

histories for 125 respondents.  

                                                        
1 The questions’ wordings were the following in our study: 1. Who are the people you need to collaborate with in 

your current projects in order to get your work done? Pick as many of your co-workers as you like. (Click on a 
name to select and click again to de-select.) 2. Who are the people who give you important information to get 
your current projects done? Pick as many of your co-workers as you like. 3. Who are the people you socialise 
with outside of work-related situations? Pick as many of your co-workers as you like. 



 
 

 

 

Figure 1. 

 Connections of respondents. (A) Connections in the information networks within firms. 

Colours represent firms. (B) LinkedIn connections added to advice network. The colour of 

inter-firm edges is set on a dyadic level as the interpolation of nodes’ colour. LinkedIn 

connections concentrate within firms, but a significant number of them bridge across firms in 

the cluster. 

Advice networks within firms and additional LinkedIn connections across respondents are 

displayed in Figure 1. Ties in the advice networks are directed. This implies that there might 

be two edges between two nodes in case both respondents indicated the other as a source of 

information (Fig. 1A). Although the number of respondents vary considerably between 3 and 

25, these networks are relatively similar in terms of edge density (mean equals 0.21 with a 95% 

confidence interval of [0.14; 0.28]) and average path length (mean equals 1.61 with 95% 

confidence interval [1.34; 1.88]). In Fig. 1B we add the LinkedIn connections to the advice 

networks and show that employees are linked to workers in other firms. Moreover, there are 

co-workers who are not linked in the advice network but are connected on LinkedIn. 

  



 
 

 

 

 

 

 

 

 

Figure 2. 

 Geography of respondents’ national (A) and global (B) networks. Node sizes 

represent number of connections. The region has a diverse connection portfolio in Sweden 

and is mostly connected European countries. However, Umea experts have many connections 

in the USA and other large countries. 

To assess the spatial dimension of links, we divide the connections collected from LinkedIn 

profiles to three geographic categories: local (Umeå), national (rest of Sweden), and global 

(outside Sweden). The geography of their global and national connections is displayed in 

Figure 2 A and B. As depicted from the figure, proximity clearly shapes the geography of the 

networks. The largest number of links is, hardly surprising, to the capital city of Stockholm. 

Although the other two metropolitan regions (Gothenburg in the West and Malmö in the 

South) indeed both have a significant number of connections, the neighbouring city of 

Skellefteå in the North also stands out. Looking at the global (international) connections, 

although the single country with the most connections is the US, the nearby European 

countries (UK, Norway, Poland) dominate.  

Based on the respondents LinkedIn profile it is then possible to collect the skills of our 

respondents. We observe 2639 skill listings from 150 observed respondents, leading to 847 

different skills being represented in the dataset. This means that one person has on average 

17.6 skills; the minimum is two, and the maximum 46 skills for a person. The most popular 

skill is possessed by 76 respondents, however, an average skill is only possessed by 3.11 people 

(Table 1). 

We have information on the location of LinkedIn contacts for 125 respondents. They have 

57.7 local, 73.1 Swedish non-local and 41.2 foreign contacts on average. Considering all 

LinkedIn contacts, respondents have 172 connections on average (Table 1). 



 
 

 

Table 1.  

Summary statistics of respondents’ skills and LinkedIn connections 

 Skills LinkedIn connections by respondents 
 Skills by 

respondents 
Frequency 
of skills Local National Global Total 

Mean 17.6 3.11 57.7 73.1 41.2 172.0 
SD. 8.93 6.75 61.0 109.5 97.2 191.7 
Min. 2 1 2 0 0 3 
Max. 46 76 311 761 582 998 
N 150 847 125 125 125 125 

 

The skills of the workers are analysed using two types of measures. First, we define the 

similarity of skills between workers using the Jaccard measure (the number of common skills 

between two workers divided by the total number of skills they have together):  

𝐽𝑝𝑞 =
|𝑆𝑝∩𝑆𝑞|

|𝑆𝑝∪𝑆𝑞|
,      (Eq. 1) 

where 𝐽𝑝𝑞  is the similarity measure between individuals 𝑝 and 𝑞, 𝑆𝑝 and 𝑆𝑞 are their skill-

sets, respectively. 

Second, we assess how related their non-similar skills are by using a co-occurrence based 

approach. In this technique, we define two skills related if they often occur together in the skill-

profiles of individuals. This is quantified based on the ratio of how often they occur together in 

the profiles compared to what we expect by random chance, applying the measurement of 

Teece et al. (1994) that originally was developed for product portfolios within firms: 

𝑡𝑖𝑗 =
𝐶𝑖𝑗−𝜇𝑖𝑗

𝜎𝑖𝑗
,       (Eq. 2) 

where 𝑡𝑖𝑗 is the relatedness measure, 𝐶𝑖𝑗 is the observed number co-occurrences of the 

skills,  𝜇𝑖𝑗 is the expected value of co-occurrence in case of random distribution of the skills, 

and 𝜎𝑖𝑗 is its standard deviation assuming binomial distribution. The formula of expected co-

occurrence is 𝜇𝑖𝑗 =
𝑛𝑖𝑛𝑗

𝐾
 and of standard deviation is 𝜎𝑖𝑗

2 = 𝜇𝑖𝑗
1−𝑛𝑖

𝐾

𝐾

𝐾−1
, where 𝐾 is the number 

persons, and 𝑛 is the observed frequency of the skill.  

Figure 3 represents the relatedness landscape of the skills using the definition of Equation 

2. Similar skills cluster together, which we build upon when grouping and labelling these 

groups by characteristic features of included skills. Interestingly, management-related skills 

(e.g. Public relations and Decision making) are not related to engineering (eg. System design, 

Database, Engineering) or analytical skills (e.g. Visuals, Analysis and modelling), but more to 

Finance and Sales. Strongly related skill groups are, for example, Finance and Sales, Artificial 

Intelligence (AI) and Investments and Business Intelligence. Audio is in itself a rather distinct 



 
 

 

group of skills that is not very connected to other ICT skills while Knowledge management has 

a transcending character.  

 

 

Figure 3. 

 Map of the relatedness of the skills. Nodes represent skills, edges represent relatedness 

values with a threshold of 𝒕𝒊𝒋 >2. Colors represent communities detected by the Louvain 

algorithm. Similar skills tend to cluster together. 

Having defined the relatedness of the skills, we measure the degree of skill-relatedness 𝑅𝑝𝑞 

between every pair of individuals 𝑝 and 𝑞 by taking the average relatedness for each 

combinations of person-skills: 

𝑅𝑝𝑞 = ∑ ∑
𝑡𝑖𝑗 

|𝑆𝑝||𝑆𝑞|−2|𝑆𝑝∩𝑆𝑞|𝑗𝜖𝑆𝑞,𝑖≠𝑗𝑖𝜖𝑆𝑝
,    (Eq. 3) 

where 𝑆𝑝 and 𝑆𝑞 are the skill-sets of 𝑝 and 𝑞 .  

When measuring skill-similarity and relatedness of skills from LinkedIn data, we must be 

aware that skill-sets displayed on LinkedIn can be endogenously correlated with LinkedIn 

networks. On the platform users can add their own skills, but skills can also be added via 

“endorsement”. In this case the platform asks one’s connections to endorse the individual with 

a set of suggested skills, and the exact algorithm of this recommendation system is not publicly 

available but might influence the tie-creation.   



 
 

 

3. RESULTS 

2.1 3.1 SKILL-RELATEDNESS AND CO-WORKER NETWORKS 

Figure 4 contains distributions of average relatedness (4A-B) and similarity (4C-D) of 

individuals with colleagues in the firm and with colleagues who are connected. Figure 4A 

illustrates that the average relatedness between co-workers in the same firm is higher than 

between random persons in the sample not being co-workers. Further, we find that the 

relatedness of skills between those who are connected on LinkedIn does not differ from 

relatedness of co-workers. Zooming into relations within firms in Figure 4B; we find that 

individual workers who are connected in the advice network are more skill-related on average 

than those who were not connected in the advice network. We can observe similar patterns 

regarding skill similarity. Co-workers within firms tend to have more similar skills than non-

connected workers in different firms (Figure 4C). Hence, while there is a high degree of 

similarity and relatedness of skills between co-workers, which is expected given the formation 

of creative and more productive teams (Becker and Murphy 1992, Brennecke and Rank 2017; 

Neffke 2019), this is also the case concerning social connections reported on LinkedIn. 

Furthermore, employees tend to ask advice from co-workers having more similar skills (Figure 

4D). In other words, workers are more likely to be connected to persons with related skills than 

to any random person, both within the workplace but also to other firms and regions.  

  



 
 

 

   .A.   

 

   .B.   

 

 

 

 

.C.                                                                                         .D.  

 

 

 

 

 

 

Figure 4. 

Average relatedness (A-B) and similarity (C-D) of skills between pairs of 

respondents.  

(A, C): Comparison of LinkedIn connections (green) | Co-workers in firms (blue) | none 

(red).  (B, D) Co-workers in the firms connected in advice network (light blue) | not 

connected in advice network (dark blue). Findings indicate highly similar or related skills 

between employees who work at the same firm, are connected on LinkedIn, and especially, if 

they ask advice from each other. 

To analyse the statistical significance of these results, one has to consider that similarity 

and relatedness are measured for each dyad, while we actually observe connections on the 

individual level. Therefore, to obtain correct estimates, we used cross-classified multilevel 

models (Skrondal and Rabe-Hesketh 2004, Snijders and Bosker 2011), where level 1 represent 

the dyads, and level 2 the individuals. Multilevel models (in econometrics these models are 

labelled as clustered standard error models) are to analyse data when individual observations 

are clustered within groups. In this case, we have fewer observations for the group level 

variables than for individual ones, therefore standard errors tend to be under-estimated in OLS 

specifications and significance levels are lower (Snijders and Bosker 2011). Indeed, when 



 
 

 

estimating OLS models we obtain similar results but also slightly more significant estimates.  

Cross-classified data structure is a specific case when observations are classified by 

intersections of overlapping groups. Furthermore, advice-seeking behaviour as well as skills 

may be correlated with individual attributes. Therefore, we include work experience, type of 

job (junior professional, senior professional or manager), gender, and firm size as control 

variables to our models. Accordingly, we estimate the following equation: 

𝐿𝑝𝑞 = 𝛼 + 𝛽1𝑅𝑝𝑞 + 𝛽2𝐽𝑝𝑞 + 𝜸𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒑 + 𝜉𝑝 + 𝜉𝑞 + 𝜀𝑝𝑞 ,  (Eq. 4) 

Where 𝐿𝑝𝑞 = 1, if person p asks advice from person q and 0 otherwise, while 𝜉 and 𝜀 are 

the error terms on the individual and on the dyad level respectively. 

Table 2 reports the estimates for the network of asking advice in professional matters 

within the firm. Having more related skills (Column A) or more similar skills (Column B) 

increase the likelihood of tie-formation. In this sense, the answer for our first research question 

is that skill similarity does predict advice relations and related skills also predict advice 

relations. However, once the share of the same skills is controlled for, the relatedness of the 

non-similar skills does not have an additional impact on this (Column C). This implies that 

while concentrations of complementary skills in a firm allow both specialization and (related) 

diversity that induce individual wage premiums as well as firm performance (Boschma et al 

2009; Neffke 2019), the more qualitative content of co-worker interactions tend to be between 

employees with similar skills. Hence, on the scale of the firm complementary skills induce 

spillovers although the more direct information flows are between similar agents. The 

significant random effects on the individual (1) and individual (2) levels indicate that dyadic 

variance is clustered by the individuals, which justifies the choice of multilevel approach.   

 



 
 

 

Table 2.  

The impact of skill relatedness and skill similarity on links in the advice seeking 

networks 

Dependent variable: Link in advice network 
 (A) (B) (C) 

Independent variables:    
Skill relatedness 0.0321**  -0.0213 
 (0.0134)  (0.0202) 
Skill similarity  0.400*** 0.517*** 
  (0.0970) (0.147) 
Constant 0.0803 0.0742 0.0809 
 (0.0658) (0.0656) (0.0660) 
Controls1 YES YES YES 
    
Random effects    
Individual (1) 0.0163*** 0.0168*** 0.0170*** 
 (0.00376) (0.00384) (0.00388) 
Individual (2) 0.00426* 0.00372* 0.00361* 
 (0.00228) (0.00220) (0.00218) 
Dyad 0.0746*** 0.0738*** 0.0737*** 
 (0.00410) (0.00405) (0.00405) 
Observations (dyads) 910 910 910 
    

Notes: coefficients (standard errors in parentheses) of cross-classified multilevel models.  
1 Controls: work experience (years), type of job (junior professional, senior professional or 
manager), gender and firm size 
*** p≤0.01, ** p≤0.05, * p≤0.1 

2.2 3.2 SKILL-RELATEDNESS AND THE GEOGRAPHY OF CO-WORKER TIES 

The degree of skill similarity and relatedness vary depending on where these connections are 

located. Considering the geography of networks, on the one hand, a higher share of local 

contacts is associated with a higher relatedness of skills to other respondents in our sample 

(r=0.16, p<0.001), and a higher skill similarity (r=0.19). On the other hand, the share of global 

contacts correlates negatively with relatedness of skills to other people (r= -0.14), as well as 

with skill similarity to other people (r= -0.16). Similar results can be found within firms for 

skill similarity: The skills of those who have more global contacts tend to be less similar to the 

skills of their present co-workers, while skills of those who have more local contacts tend to be 

more similar. Consequently, not only are global contacts more likely to introduce additional 

skill-variety in itself, the persons having these contacts are also less similar to their co-workers 

and hence act as a bridge between localized knowledge and more global knowledge. A trade-

off discussed in the conceptual cluster literature (c.f., Bathelt et al 2004), but to our knowledge 

never been systematically empirically shown for a detailed regional cluster (Bathelt and Turi 

2011). Figure 5 illustrates these findings regarding relatedness and similarity of skills of all 



 
 

 

respondents (Figure 5A, C) and of co-workers (Figure 5B, D). Here we separate between two 

categories of workers: few global contacts (0%, representing the lowest quartile) versus many 

global contacts (>15%, the highest quartile). 
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Figure 5.  

Average relatedness (A-B) and similarity (C-D) of skills of persons with low | 

high share of global contacts. (A, C): All respondents, (B,D): Co-workers within firms. 

Findings suggest that similarity and relatedness of skills of workers to everyone else in the 

firm and the region is low in case the the individual has many global contacts. 

To test the statistical significance of the findings reported in Figure 5, we estimate two 

additional cross-classified multi-level regressions: 

𝑅𝑝𝑞 = 𝛼 + 𝛽1𝐿𝑂𝐶𝑝 + 𝛽2𝐺𝐿𝑂𝐵𝑝 + 𝛽3𝑁𝑝 + 𝜸𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒑 + 𝜉𝑝 + 𝜉𝑞 + 𝜀𝑝𝑞      

  (Eq .5a) 

𝐽𝑝𝑞 = 𝛼 + 𝛽1𝐿𝑂𝐶𝑝 + 𝛽2𝐺𝐿𝑂𝐵𝑝 + 𝛽3𝑁𝑝 + 𝜸𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒑 + 𝜉𝑝 + 𝜉𝑞 + 𝜀𝑝𝑞 .      

  (Eq .5b) 



 
 

 

In both equations, LOC denotes the share of local contacts within the person’s LinkedIn 

connections, and GLOB represent the share of contacts outside Sweden. N represent the size 

of the individual’s network on LinkedIn, and Controls include gender, work experience, job 

type and firm size.  

We estimate both regressions on two samples. First, we consider all potential pairs of our 

respondents. The results obtained from these models are reported in Table 3 Panel A. Second, 

we restrict the sample to those dyads, where both persons work at the same firm (Table 3 Panel 

B).  

The estimates suggest that a higher share of local contacts is associated with higher skill 

similarity and skill-relatedness to co-workers as well as to other ICT workers in the region. 

Once the share of local contacts is considered, having a higher share of global contacts (instead 

of national ones) is only significant in the model on skill-relatedness of all workers without 

individual- and firm-level control variables (Table 3 Panel A column 1). Nevertheless, the 

models are conclusive about our second research question, suggesting that globally embedded 

professionals’ skills are less similar and less related compared to skills of locally embedded 

ones. The fact that the parameter of global contacts is not significant in column 2 indicates the 

presence of selection effects as certain positions tend to be more globally oriented2. For 

example, having high share of global connections is positively correlated with being in 

managerial position. This confirms previous findings suggesting that hiring practices, 

especially more global-oriented employees, allow firms to tap into global sources of knowledge 

and thereby reduce the risk of cognitive inertia (Hassink 2010). 

In fact, as indicated above, if at all being impactful, a high share of global contacts implies 

a greater diversity of skills. Having many connections, disregarding the type of skills involved, 

is also associated with lower skill similarity and skill relatedness to other workers in the region. 

In all, this suggests two dimensions of local knowledge formation. First, workers in a local 

industry with a relatively high local network density tend to have a distinct set of skills and 

competences. Secondly, a large network, consisting of high shares of non-local links, is more 

likely to bring new types of skills to the region. Hence, regional clusters (in this case ICT) 

develop distinct local capabilities that might be different from similar activities in other 

regions. In the conceptual literature, this is usually referred to untraded interdependencies 

that facilitate localized learning (Storper 1997; Malmberg and Maskell 2002). To avoid inertia 

and potential lock-in effects (Grabher 1993) it is therefore essential to also have global 

gatekeepers that can act as knowledge pipelines (Bathelt et al 2004) as well as being able to 

recruit more global-oriented employees (Hassink 2010).  

                                                        
2 In addition, N. of observations is somewhat lower in the equations including controls. This is due to the survey 

data collection that left control variables missing in many cases. 



 
 

 

These findings correspond to our expectations and verify that workers’ local social 

connections are strongly related to the skill-set accumulated within the firm or the region. On 

the contrary, those workers who have established global connections in the past tend to deviate 

most from the local skill-set. Taken together the results presented in Figures 4 and 5 and Table 

2, distant connections are important sources for accessing new skills in closely related local co-

worker networks. Hence, as proposed in previous studies, a mix of local buzz and extra-local 

linkages is crucial for continuous renewal and competitiveness (Bathelt et al 2004; Bathelt and 

Turi 2011). 

 

  



 
 

 

Table 3.  

The impact of geography of networks on skill relatedness and skill similarity.  

PANEL A All workers 
Dependent variable Skill relatedness Skill similarity 
Independent variables     
share of contacts global1 -0.188* -0.114 -0.0255 0.293 
 (0.102) (0.103) (0.0195) (0.362) 
share of contacts local1 0.209** 0.173* 0.0371* 0.517* 
 (0.104) (0.0964) (0.0198) (0.308) 
N of connections2 -0.283*** -0.0296*** -0.0056*** -0.0056 
 (0.0097) (0.0097) (0.0019) (0.0345) 
Constant 0.147** 0.00564 0.0665*** 0.418 
 (0.0646) (0.0838) (0.0121) (0.266) 
Controls3 NO YES NO YES 
Random effects     
Individual (1) 0.000996*** 0.0177*** 0.0246*** 0.0337 
 (0.000162) (0.00361) (0.00443) (0.0346) 
Individual (2) 0.00164*** 0.0642*** 0.0516*** 0.0845** 
 (0.000204) (0.00862) (0.00687) (0.0403) 
Dyad 0.00321*** 0.237*** 0.233*** 0.466*** 
 (5.74e-05) (0.00454) (0.00415) (0.0473) 
     
Observations (dyads) 6,493 5,663 6,493 5,663 
     

 
PANEL B Co-workers 
Dependent variable Skill relatedness Skill similarity 
Independent variables     
share of contacts global1 0.338 -0.114 -0.0135 0.293 
 (0.389) (0.103) (0.0684) (0.362) 
share of contacts local1 0.649* 0.173* 0.0993 0.517* 
 (0.350) (0.0964) (0.0647) (0.308) 
N of connections2 0.0257 -0.0296*** -0.0058 -0.0056 
 (0.0373) (0.0097) (0.0064) (0.0345) 
Constant 0.236 0.00564 0.0930** 0.418 
 (0.210) (0.0838) (0.0384) (0.266) 
Controls3 NO YES NO YES 
Random effects     
Individual (1) 0.0907** 0.0177*** 0.00548*** 0.0337 
 (0.0444) (0.00361) (0.00145) (0.0346) 
Individual (2) 0.0716** 0.0642*** 0.00199*** 0.0845** 
 (0.0353) (0.00862) (0.000718) (0.0403) 
Dyad 0.464*** 0.237*** 0.00618*** 0.466*** 
 (0.0458) (0.00454) (0.000640) (0.0473) 
     
Observations (dyads) 6,493 5,663 310 303 
     
Notes: coefficients (standard errors in parentheses) of cross-classified multilevel models.  
1 Reference: national contacts 2 Scale of N. of connections is 100 links. 3 Controls: work 
experience (years), type of job (junior professional, senior professional or manager), gender 
and firm size. *** p≤0.01, ** p≤0.05, * p≤0.1  



 
 

 

2.3 3.3 EXTENSION: THE ROLE OF EDUCATION AND WORK EXPERIENCE IN 

CREATING LOCAL AND GLOBAL CONNECTIONS 

Professional contacts are not exogenously given to workers. They evolve during workers’ 

education and work histories (Dahl & Pedersen 2004; Snijders, Lomi & Torló, 2013). 

Therefore, it is worth extending our analysis by examining how the location of workers’ 

education and work experience shape the geography of networks and the degree of skill 

similarity and relatedness. 

We divided education and work experience of employees into three categories: local, 

national or global, akin to the categorisation of Linkedin connections in Table 1 and 3. This 

assignment is based on the minimum distance rule, meaning that in case the employee had 

both local and global education or work experience previously in her/his career, education or 

work experience are defined local. 

In Figure 6, we illustrate the strong relation of the geography of network contacts with the 

geographical category of education (A), and its’ much weaker relation with work experience 

(B). The more global (local) the education is, the more likely it is to have more global (local) 

connections. Work experience, however, has a smaller effect on the degree of local contacts, 

although global contacts naturally are slightly more common for workers having experience of 

working abroad. 

  



 
 

 

 

Figure 6.  

Share of local and global contacts by education and work experience.  

(A) Fractions calculated by education categories of workers. Bars denote mean and whiskers 

denote ± 2 standard errors. Individuals with global education have high share of global 

contacts, while individuals with local education have high shares of local contacts. (B) 

Fractions calculated by categories of work experience. Bars denote mean and whiskers denote 

± 2 standard errors. Individuals with local work experience are embedded in local networks 

but global work experience does not make networks more global. 

Again, by means of cross-classified multilevel models, we assess whether the geography of 

education and work experience not only influence the fraction of local vs global contacts, but 

the degree of skill similarity and relatedness. Our findings suggest that having a foreign 

education decreases skill similarity compared to having a national education. There is however 

no significant difference in the skill similarity and skill relatedness between different 

universities in Sweden. Workers educated in Sweden tend to have a higher degree of skill-

relatedness to other workers compared to those educated abroad (Table 4, Column 1). We 

however find no significant associations between having foreign work experience and the skill 

composition (Table 4, Column 2), but having only local work experience increases relatedness 

of skills to other workers in the region.   

Finding no effect of foreign work experience is not the result of controlling for having 

foreign education, since it is insignificant also when omitting that control (not reported in 

table). It can rather be the result of the weak correlation between work histories and the 

geography of networks. We however believe that the reason behind this is technical: if 

respondents did not update their LinkedIn profile recently, our measure for geography of the 

networks is not valid. We see that workers without any Swedish work experience report on 

average 40% local contacts, which may be explained by that those workers did not update their 



 
 

 

profiles after coming to Sweden. On the other hand, education experience usually does not 

change after entering the labour force, therefore measuring education from LinkedIn is less 

sensitive to up-to-datedness of the profiles. 

Table 4.  

The impact of education and work experience on skill relatedness and skill 

similarity 

Dependent variable: Skill relatedness Skill 
similarity 

   
Work experience1   

Local  0.0868** 0.00995 
 (0.0419) (0.00880) 

Foreign  0.138 0.0113 
 (0.165) (0.0275) 
Education1   

Local  0.0434 0.00608 
 (0.0377) (0.00790) 

Foreign  -0.296*** -0.0438* 
 (0.113) (0.0232) 
N of connections2 -0.0454*** -0.0076*** 
 (0.0090) (0.0019) 
Constant -0.0234 0.0223 
 (0.0847) (0.0172) 
Controls3 YES YES 
Random effects   
Individual (1) 0.0150*** 0.000779*** 
 (0.00342) (0.000150) 
Individual (2) 0.0768*** 0.00204*** 
 (0.0102) (0.000260) 
Dyad 0.215*** 0.00327*** 
 (0.00454) (6.90e-05) 
   
Obseravetions (dyads) 4,694 4,694 
   

Notes: coefficients (standard errors in parentheses) of cross-classified multilevel models.  
1 Reference category: national. 2 Scale of N. of connections is 100 links 3 Controls: work 
experience (years), type of job (junior professional, senior professional or manager), gender 
and firm size  

 *** p≤0.01, ** p≤0.05, * p≤0.1 
 

  



 
 

 

CONCLUSIONS 

The primary aim of this paper was to open the “black box” on the relation between firm-specific 

co-worker networks and external links across space to assess whether the geography of ties 

condition the degree of skill similarity. Our question is motivated by recent contributions 

arguing that firms and regions alike need to diversify their knowledge base in order to stay 

competitive and avoid cognitive lock-in (Grabher 1993, Boschma 2005). Combining detailed 

survey-data on the networks of 214 employees in 16 ICT-firms in the city of Umeå, Sweden, 

with automated online data collection on the professional networks of these individuals, we 

find that the geography of social connections indeed conditions the likelihood that firms (and 

hence regions) can access diverse knowledge.  

Our findings suggest that there is a high relatedness of skills between co-workers compared 

to any random employee in the regional ICT industry. This finding supports the notion that 

firms develop certain capabilities that distinguish them from other firms in the industry (e.g., 

Penrose 1959). It is also consistent with the literature on knowledge specialization (Becker and 

Murphy 1992, Kogut and Zander 1993) and the resource-based approach of organization 

(Madhok 2002). We do however find here that the prevalence of complementarities is not only 

contingent on present co-worker networks, this also characterize professional networks via 

LinkedIn. Hence, workers are more likely to be connected to persons with related skills than 

any random person, both within the workplace, but also to other firms and regions. It is 

important to note that the observed correlation between the skills and being connected on 

LinkedIn can be positively biased by LinkedIn’s own recommendation algorithm. 

Moreover, the geography of these ties also determines the degree of having access to diverse 

knowledge. Workers with more local contacts tend to be more similar to their co-workers and 

also have links to less diverse types of knowledge. This implies that recruiting key-personnel 

having broader national and global connections can act as a bridge to knowledge from those 

communities (c.f., Bathelt et al 2004, Hassink, 2010). This spatial dimension is also partly 

related to the size of the network as having more connections decreases skill similarity and skill 

relatedness to other workers in the region. This suggests that a large network, consisting of 

non-local links, is more likely to bring new skills to the region. For this global knowledge 

diversity to be absorbed and internalised in the local economy, a relatively coherent local 

knowledge base is required.  

Finally, we show that the geographical location of education correlates with the geography 

of network contacts. Based on cross-classified multilevel models, we show that having a foreign 

education decreases skill similarity compared to local and national education. Considering 

relatedness of the non-similar skills, skills of the locally and nationally educated workers are 

the most similar to other workers in the region, while it is less related for those having foreign 



 
 

 

education. These findings thereby suggest that ICT-related educations in general are relatively 

similar across different national universities compared to foreign educations. In particular, this 

suggests a team building mechanism based on “weak ties,” where existing team members 

manage complementary teams with related skills by  hiring local peers known to have similar 

educations but lightly different skill specializations. In other words, this points towards the 

role of social networks to sustain matching externalities in industry-agglomerations (c.f., 

Eriksson and Lengyel 2019). 

In sum, this research provides two distinct contributions. Compared to previous research 

on advice networks that identified the impact of formal positions and individual characteristics 

(eg. Lazega and Van Duijn 1997, Agneessens and Wittek 2012), value similarity (Lazega et al. 

2012), local or global identification (Lomi et al. 2014) and team membership (Brennecke and 

Rank 2016) in network formation, we have shown that advice networks are formed along the 

skills of individuals. We thereby show that to develop mutual understanding and interactive 

learning, some similar or related skills are required between the two agents. Spatial proximity, 

as often assumed in the literature (Storper and Venables 2004), is simply not enough. In this 

aspect our conclusions are similar to Brennecke and Rank’s (2017) analysis of collaborations 

of patenting inventors at a high-tech firm. To the literature on knowledge flows in general, and 

labour mobility in particular, we have shown that the skill-content of such links is conditioned 

by the geography of contacts: More globally connected workers are more likely to both have 

more diverse skills and they are also connected to more diverse skills outside the firm 

compared to less globally connected co-workers in the firm. This is however greatly contingent 

on the type of job of the worker, as including such information by and large absorb the global 

“network effect”. Therefore, the positive impact of skill-similarity captured by education or 

industry experience in larger regions, not necessarily is a function of greater within-industry 

variety in larger regions (c.f., Timmermans and Boschma 2012). Instead, our results suggest 

that local networks offer access to complementary related skills beyond what can be captured 

by educational codes (degrees). For example, different skill-specializations within degrees. 

Hence, university networks may ease the matching of related skills through weak ties by giving 

additional information on the specialization of peers.   

Although we explored interesting relationships between co-workers’ skills and their 

networks, this study is not without limitations and many questions remain open for further 

research. For example, the data used in this study is relatively small and confined to a specific 

geography and a specific industry. Having data on other ICT clusters could provide more 

robust estimates on what types of networks that matters where, while including more diverse 

industries may reveal different trends. Furthermore, although we have controlled for firm size, 

our sample is relatively homogenous, containing only small and medium sized companies. 

Therefore, examination of large MNEs may uncover further, or different mechanisms. As we 



 
 

 

could see that some of these estimates are affected by the inclusion on individual attributes 

such as position in the firm and gender, further studies could delve deeper into these 

differences to help explain differences in, for example, career progression and collaboration 

patterns for men and women. Further, we have shown that skills and networks are related, but 

from the social network analysis perspective, it would be interesting to analyse how these two 

co-evolve over time. Having access to longitudinal data could allow more robust estimates 

controlling for both observed and unobserved individual attributes.  In addition, from the 

organizational networks point of view, our findings may suggest that differences in the firms 

regarding how diverse or similar their workforce’s skills are, imply different network 

structures, which support efficient cooperation. This could then be analysed in respect to wage 

formation and firm performance. For economic geography, our findings on the internal 

differences of skill-composition within firms would suggest that greater consideration needs 

to be taken when analysing within- and between-regional knowledge and information 

networks. Regional aggregates may actually reveal only fragments on the potential trade-offs 

between local and non-local links.  
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