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ABSTRACT 
 
This paper assesses the network robustness of the technological capability base of 269 

European metropolitan areas against the potential elimination of some of their 

capabilities. By doing so it provides systematic evidence on how network robustness 

conditioned the economic resilience of these regions in the context of the 2008 

economic crisis. The analysis concerns calls in the relevant literature for more in-depth 

analysis on the link between regional economic network structures and the resilience 

of regions to economic shocks. By adopting a network science approach that is novel to 

economic geographic inquiry, the objective is to stress-test the technological resilience 

of regions by utilizing information on the co-classification of CPC classes listed on 

European Patent Office patent documents. We find that European metropolitan areas 

show heterogeneous levels of technology network robustness. Further findings from 

regression analysis indicate that metropolitan regions with a more robust technological 

knowledge network structure exhibit higher levels of resilience with respect to changes 

in employment rates. This finding is robust to various random and targeted elimination 

strategies concerning the most frequently combined technological capabilities. 

Regions with high levels of employment in industry but with vulnerable technological 

capability base are particularly challenged by this aspect of regional economic 

resilience. 
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A technológiai képességbázis hálózati szerkezete 

meghatározza a régiók gazdasági ellenálló képességét 

TÓTH GERGŐ – ELEKES ZOLTÁN – ADAM WHITTLE –  

CHANGJUN LEE – DIETER F. KOGLER 

ÖSSZEFOGLALÓ 

A tanulmány 269 európai nagyvárosi térség technológiai képességbázisának hálózati 

robusztusságát vizsgálja meglévő technológiáik potenciális eltűnésével szemben. 

Ezáltal szisztematikus bizonyítékot szolgáltat arra vonatkozóan, hogy a 2008-as 

gazdasági válsággal összefüggésben a hálózat robusztussága hogyan határozta meg e 

régiók gazdasági ellenálló képességét. Az elemzés a regionális gazdasági hálózati 

struktúrák és a régiók gazdasági sokkokkal szembeni ellenálló képessége közötti 

kapcsolat mélyebb megértésével járul hozzá a vonatkozó szakirodalomhoz. A 

gazdaságföldrajzi vizsgálatokban újszerű hálózattudományi megközelítéssel a cél a 

régiók technológiai ellenálló képességének stressztesztelése az Európai Szabadalmi 

Hivatal szabadalmi dokumentumaiban felsorolt CPC-osztályok felhasználásával. 

Megállapítottuk, hogy az európai nagyvárosi térségek különböző mértékű technológiai 

hálózati ellenálló képességet mutatnak. A regressziós elemzés további eredményei azt 

mutatják, hogy a robusztusabb technológiai tudáshálózati struktúrával rendelkező 

nagyvárosi térségek nagyobb ellenálló képességet mutatnak a foglalkoztatási ráta 

változására vonatkozóan. A magas ipari foglalkoztatási szinttel, de sérülékeny 

technológiai képességbázissal rendelkező régiók számára a regionális gazdasági 

ellenálló képességnek ez az aspektusa különösen fontos. 

 

 

JEL: C53, O30, R11 

Kulcsszavak: regionális gazdasági ellenálló képesség, hálózati robusztusság, nagyvárosi 

térségek, technológiai-tér 
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Abstract: This paper assesses the network robustness of the technological capability base of 

269 European metropolitan areas against the potential elimination of some of their capabilities. 

By doing so it provides systematic evidence on how network robustness conditioned the 

economic resilience of these regions in the context of the 2008 economic crisis. The analysis 

concerns calls in the relevant literature for more in-depth analysis on the link between regional 

economic network structures and the resilience of regions to economic shocks. By adopting a 

network science approach that is novel to economic geographic inquiry, the objective is to 

stress-test the technological resilience of regions by utilizing information on the co-

classification of CPC classes listed on European Patent Office patent documents. We find that 

European metropolitan areas show heterogeneous levels of technology network robustness. 

Further findings from regression analysis indicate that metropolitan regions with a more robust 

technological knowledge network structure exhibit higher levels of resilience with respect to 

changes in employment rates. This finding is robust to various random and targeted elimination 

strategies concerning the most frequently combined technological capabilities. Regions with 

high levels of employment in industry but with vulnerable technological capability base are 

particularly challenged by this aspect of regional economic resilience.  

 

Keywords: regional economic resilience, network robustness, metropolitan regions, 

technology space 
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1. Introduction 

 

Regional economies across Europe show persistent disparities in economic performance and 

face a number of continuous structural challenges. Stagnating industrialised and peripheral 

regions suffer from a slow-burning decline in economic outcomes, while dynamic large urban 

agglomerations gain greater shares of high-wage jobs (Iammarino et al. 2019). In a broader 

context, the OECD (2019) reports that productivity in the least productive regions of an OECD 

country is on average 46% lower than productivity in its most productive one. In one‑third of 

these countries, productivity growth is concentrated in a single region that already features a 

high level of productivity, further increasing regional inequalities. Regions are also more 

exposed to external shocks due to their increasing openness and interdependencies with the 

global economy. European regions underwent a slow recovery in the aftermath of the global 

economic crisis of 2008, as it took many regions more than 8 years to reach pre-crisis per capita 

GDP levels (OECD 2019). Recovery was also unbalanced across European regions amidst an 

overall downturn (Dijkstra et al. 2015), with some capital regions creating more than 50% of 

new jobs since 2006 in their respective country (OECD 2019), while other capital metro regions 

have been hit hard by the crisis. Finally, due to shifting industrial and occupational structures, 

as well as income polarisation, people in an increasing number of regions are experiencing 

their economic opportunities and welfare provision diminishing, which is directly linked to a 

growing political discontent (Rodríguez-Posé 2018, Dijkstra et al. 2020). 
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In response to these challenges, growing attention in academia and policy has been directed 

towards the concept of regional economic resilience. That is, the capacity of regional 

economies to withstand economic shocks and at the same time to retain their long-term ability 

to develop new growth paths (Christopherson et al. 2010, Martin 2012, Boschma 2015, Webber 

et al. 2018, Martin & Sunley 2020). Response and adjustment to multiple forms of disturbances 

affect regional development over time (Simmie & Martin 2010, Martin 2012), and can 

contribute to persistent uneven regional development (Martin & Sunley 2020), as resistance to 

and recovery from one shock is likely to influence the resilience of regions against subsequent 

crisis events (Simmie & Martin 2010). In short, the literature on regional resilience has recently 

been emphasising the ability of regions to adapt their industrial, technological, and institutional 

structures in an economic system that is constantly evolving (Christopherson et al. 2010, 

Simmie & Martin 2010, Pike et al. 2010), acknowledging that the need for economic renewal 

is ever present, although usually more stressing in times of crises (Saviotti 1996). Such 

capacity, however, is strongly conditioned by pre-existing regional resources and the 

historically formed economic structure (Diodato & Weterings 2015, Webber et al. 2018, Xiao 

et al. 2018). 

 

Yet, despite considerable efforts, it is still unclear why some regions are more resilient than 

others (Christopherson et al. 2010, Martin 2012, Martin & Sunley 2020). In particular, we need 

a more detailed account on how the structure of the local economy leads to more or less resilient 

regions, as the economic structures of regions shape sensitivity to shocks, as well as recovery. 

This is because regions are collections of networked individuals, firms, industries, and 

institutions depending on one another (Balland et al. 2015). A region's economy can be 

depicted as a network in which nodes represent industries or technologies, while the links 

indicate the degree of relatedness between them (Boschma 2015, Whittle & Kogler 2020). Such 

networks inform us on how capabilities, emerging from a region's resources and sustaining its 

economic activities, are combined (Hausmann & Hidalgo 2011, Neffke et al. 2018), 

conditioning the processes of developing new growth paths (Neffke et al. 2011), as well as 

sensitivity to shocks (Balland et al. 2015). Nevertheless, further evidence disentangling the 

sensitivity of these networks to various economic crisis events is still needed. In fact, Boschma 

(2015, pp. 714) noted that "in the regional resilience literature, it is remarkable how little 

attention has been paid to the sensitivity of regional networks to the removal of specific nodes 

or the dissolution of particular linkages." 
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This is precisely the issue the present investigation aims to tackle, i.e. to assess the robustness 

of a region's network structure against the elimination of some of its nodes (technological 

capabilities), and to provide systematic evidence on how this network robustness conditions 

the economic resilience of regions. To do so, we employ patent data from the European Patent 

Office (EPO) worldwide PATSTAT statistical database, and construct a network of the 

technological capabilities of 269 metropolitan regions across Europe. In these networks, nodes 

represent one of 654 technology classes appearing on patents associated with a region based 

on inventor location, while links demonstrate the frequency with which these technologies are 

combined (co-occur on a specific patent document). Inventions codified in patents can be 

viewed as distinct technological capabilities combined to achieve a specific outcome (Strumsky 

et al. 2012). In this spirit, the network of technologies combined within regions represents an 

instantiation of the local capability base deployed to reach economic outcomes such as 

employment, income, and innovation (Kogler et al. 2013, Rocchetta & Mina 2019, Whittle 

2020).  

 

Next, drawing from the network robustness literature (e.g., Albert et al. 2000, Solé et al. 2008, 

Barabási 2016, Zitnik et al. 2019), we stress-test these technology networks by sequentially 

eliminating nodes until they are severely fragmented, representing shocks disrupting the local 

technological capability base. In this way we obtain a measure of network robustness for each 

European metropolitan region. The measure is then validated by means of regression analysis 

for the case of the Global Economic Crisis of 2008, where we link regional economic resilience 

in terms of change in employment rate to the robustness of the local technological capability 

network. The required socio-economic indicators are derived from the European Regional 

Database (ERD) provided by Cambridge Econometrics. 

 

In short, our findings indicate that European metropolitan regions exhibit a high degree of 

heterogeneity with respect to the robustness of their technology networks, and regions with a 

more robust technology network structure showed higher levels of resilience in terms of 

changes in their employment rate during the economic crisis of 2008. This finding is robust to 

random and targeted elimination strategies concerning the most frequently combined 

technological capabilities, and remains even after controlling for established measures of 

regional economic structure, such as related and unrelated variety.  
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With these results this paper contributes to the literature on regional economic resilience by 

revealing the link between resilience and the technology network structure of regions, and by 

adopting a measurement approach from network science that is novel to economic geography. 

This is conceptually consistent with the accepted interpretation of regional resilience in an 

adaptive capacity framework that is reflected in the structure of the local capability base. 

Combining the state-of-the-art in regional resilience and network robustness research, the paper 

answers the call for a more detailed understanding on the role that networks play for resilience 

(Boschma, 2015). Thereby the paper joins a broader stream of studies in economic geography 

broadly defined that deploy network analysis to advance our understanding on collaborative 

knowledge production (Ter Wal & Boschma 2009, Broekel et al. 2014, Hermans 2021), 

regional diversification (Neffke et al. 2011, Rigby 2015, Kogler et al. 2017), and urban 

economic structure and resilience (Moro et al. 2021). 

 

The following section offers a brief overview concerning the empirical literature on regional 

resilience and network-based approaches to studying regional economies, and connects these 

with the concept of network robustness. Section 3 provides details on the datasets used, the 

proposed novel measure of technology network robustness, and the econometric model 

specification. Results are described in Section 4, while the final section offers a detailed 

discussion of the findings and further considerations. 

 

2. From regional economic resilience to network robustness 

 

2.1. Regional economic resilience 

 

Despite a rapidly growing corpus of literature on regional resilience (see most recently the 

Handbook on Regional Economic Resilience, Bristow & Healy 2020a), a coherent body of 

theory behind the concept is still developing (Martin & Sunley 2020). Current perspectives 

have drawn on an interdisciplinary pool of ideas (Pendall et al. 2010), converging on two main 

approaches. The first, driven by equilibrium analysis in economics, is concerned with whether 

and how rapidly a regional economy returns to its normal (pre-shock) state in terms of 

aggregate economic outcomes, such as employment or income. Thus, regional resilience is 

interpreted as an ability to "bounce back" after a shock. A related approach, having its roots in 

ecology, suggests that those regions that exhibit higher levels of resilience are better able to 
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absorb more severe shocks before shifting to a new equilibrium state (Pendall et al. 2010, 

Martin 2012). In this sense, one may consider resilience to entail the ability of regions to absorb 

shocks while retaining their core economic structure and level of economic performance. 

However, such accounts are incomplete in the sense that the capacity of regions to maintain 

economic success over the long-run rests not only on a return to normality after an economic 

shock, but on the adaptive ability of regions to reconfigure their economic structure in the face 

of such shocks (Simmie & Martin 2010, Martin 2012, Boschma 2015, Bristow & Healy 2020b). 

 

Following this critique, the literature in recent years has moved away from the equilibrium-

based approach in favour of a more evolutionary theory on regional resilience. This approach, 

drawing on evolutionary economics and evolutionary economic geography (EEG), emphasises 

the interacting elements of a local economy, producing more or less adaptable systems (Pendall 

et al. 2010, Martin 2012, Kogler 2015). Moreover, regions are viewed more in the context of 

their own history (Boschma 2015, Webber et al. 2018), as the set of previous economic 

activities conditions which economic structures are feasible for a given region and which are 

not (e.g., Neffke et al. 2011, Boschma et al. 2015, Rigby 2015). Hence, a distinctive feature of 

an evolutionary approach to regional resilience is that it considers both the short-term ability 

to respond to shocks and the long-term ability of regions to develop new growth paths (Pike et 

al. 2010, Boschma 2015, Martin & Sunley 2020). From this evolutionary perspective a resilient 

region is able to change its economic structure in anticipation or in response to an economic 

shock. 

 

The concept of resilience holds ample theoretical complexity with four interrelated dimensions, 

as proposed by Martin (2012). Resistance refers to a region's sensitivity to shocks, while 

recovery means the speed and extent of climbing out of such a disruptive event. Re-orientation 

refers to the extent to which the region undergoes a structural change in response to the crisis 

event, and the implications for economic outcomes, such as employment, output, and income. 

Finally, renewal captures the extent to which a region resumes its pre-shock growth path. With 

respect to shocks, the majority of studies on regional resilience focus on sudden crisis events, 

such as natural disasters and the global financial crisis of 2008 at the global scale (e.g., Xiao et 

al. 2018, Doran & Fingleton 2018, Cainelli et al 2019), or major plant closures at the local 

scale (e.g., Eriksson et al. 2018). Defining regional resilience in the context of new growth 

paths relates to the distinction between changes within a preconceived path, referred to as 
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adaptation, and the ability to develop new growth paths, referred to as adaptability 

(Christopherson et al. 2010, Pike et al. 2010). It is unclear, however, how regions may 

overcome the tension between exploiting their existing knowledge base without sacrificing 

adaptability (Boschma 2015). 

 

While regional resilience is defined as a multi-dimensional concept, it is understood mainly in 

relation to a system's structure, performance, and overall functioning (Bristow & Healy 2020b). 

Performance here refers to an acceptable growth path in terms of employment, output, income 

and innovation (Martin 2012, Balland et al. 2015, Cappelli et al. 2020). Persistent spatial 

disparities then lead to the question of why resilience varies from region to region, and what 

are the determinants of such adaptive capacity. Broadly speaking, the determinants being 

explored in the regional resilience literature are industrial and business structure, labour market 

conditions, financial arrangements, governance arrangements, and agency and decision-

making aspects (Martin & Sunley 2020). In this paper, we contribute to the understanding of 

regional resilience by applying network science tools to further explore the first of these 

determinants. 

 

2.2. Relatedness and capabilities 

 

A region's industrial structure is a central determinant of regional resilience both in terms of 

resistance and recovery. As a form of portfolio-effect boosting resistance, a diverse industrial 

structure may spread the risk of output demand and input supply fluctuations, and exposure to 

industry-specific external and internal disturbances (Doran & Fingleton 2018). For instance, 

EU regions with a large share of medium- and high-tech industries were found to be more 

resilient in terms of resistance during the 2008 crisis (Brakman et al. 2015). Moreover, those 

EU regions that are able to maintain knowledge production in the face of adverse shocks tend 

to be more resistant in terms of unemployment as well (Cappelli et al. 2020). In terms of 

recovery, a diverse composition of industries may offer more market opportunities and chances 

for recombining existing regional capabilities in new ways (Martin & Sunley 2020). This 

means that a diverse economic structure will likely score high on adaptability as it would 

provide a number of potential growth paths to fall back on (Boschma 2015). From this point of 

view, specialisation into a few core activities makes a region more vulnerable against economic 

shocks, except perhaps when specialising in the leading industries of the current wave of 
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technological change (Brakman et al. 2015). However, such novel industries, relying on 

complex knowledge, tend to cluster in large cities (Balland et al. 2020), making this a less 

viable option for more peripheral places. 

 

Advancements in EEG indicate that the treatment of local economic structure should go beyond 

the diversity-specialisation dichotomy by considering the relatedness of economic activities 

(Kogler 2015, Whittle & Kogler 2020). Relatedness here means those industries that are not 

too similar, nor too different in terms of productive knowledge, fostering desirable levels of 

cognitive proximity and interactive learning (Boschma 2005). Moreover, economic activities 

are related through sharing various capabilities, which are themselves combined along the 

production process (Hausmann & Hidalgo 2011). Capabilities are factors affecting the 

production ability of a location, and emerge from a region's resources and sustain its economic 

activities (Neffke et al. 2018). These include property rights, regulations, infrastructure, labour, 

capital and ameneities for workers (Bustos & Yildirim 2020). Knowledge and skills available 

locally are prominent sources of localized capabilities, contributing to the lasting competitive 

advantage of regions (Maskell & Malmberg 1999). As such, related variety seems to be suited 

to strike a balance between adaptation and adaptability by both exploiting learning and 

(re)combination opportunities within the region, and developing new growth paths (Boschma 

2015). 

 

Nevertheless, there is a tension here. On the one hand, local industries related through similar 

competencies, shared capabilities or input-output linkages are beneficial for the long-term 

economic success of a region. This is because related variety offers opportunities for growth 

(Frenken et al. 2007), as well as diversification through innovation and the entry of related 

economic activities (Kogler et al. 2017, Xiao et al. 2018). On the other hand, an economic 

crisis may also propagate itself easier through a local economy characterized by many related 

components (Martin & Sunley 2020). Indeed, technological relatedness of industries was found 

to have a positive effect on employment in the very short term (Cainelli et al. 2019), and related 

and unrelated variety of technological specialization were found to have no or negative effect 

on employment growth in regions of the UK and EU once the average relatedness of 

technologies was also considered (Rocchetta & Mina 2019, Rocchetta et al. 2021). Hence, 

overall, it is still unclear how relatedness within the local economy shapes regional resilience 

(Boschma 2015, Martin & Sunley 2020). 
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2.3. Networks and robustness 

 

We propose that this tension can be resolved once local economic structure is considered more 

explicitly. Networks are of great assistance here, as regional economies can be regarded as 

webs of specialized production units, largely dependent on the technologies, skills and tacit 

knowledge integrated in the process of value creation (Boschma & Martin 2010). Indeed, 

spatial science and network science has a longstanding relationship (Ducruet & Beauguitte 

2014), while most recently the emergence of EEG was accompanied by an influx of inspiration 

and methods from network science (Broekel et al. 2014), with respect to cluster knowledge 

networks and innovative performance (Ter Wal & Boschma 2009, Hermans 2021), connections 

and collaborative knowledge production of places (e.g., Hoekman et al. 2009, Derudder 2021), 

and the relatedness of various elements of the regional economy translating into growth and 

diversification (for an overview see Hidalgo 2021). Still, a network perspective needs to be 

further developed in economic geography (Martin & Sunley 2007), as studying the structure 

and dynamics regional economies as complex systems relies heavily on a network 

conceptualization of regions (Boschma 2015). 

 

Moving forward we build in particular on the last set of studies, where economies of regions 

have been characterized as networks of nodes representing for instance industries, occupations, 

products or technologies, and links represent the level of relatedness between them. Extending 

Shutters et al. (2018)’s argument for urban occupation networks, these network representations 

reflect a division of labour between the elements of a region’s economy, and links reflect 

solutions to particular co-ordination problems. For technologies in particular, the technology 

space reveals how frequently specific pieces of technical knowledge (nodes) are combined with 

one another (links) as evidenced by information from patent documents (e.g., Kogler et al. 

2013, 2017, Boschma et al. 2015). At the finest resolution these patterns show how particular 

technological capabilities are being combined to achieve a specific outcomes (Strumsky et al. 

2012). Hence, the technology space offers a remarkable level of detail on an important set of 

local capabilities, towards which the literature is otherwise somewhat agnostic (Bustos & 

Yildirim 2020). This admittedly comes at the price of an imperfect representation of other 

capabilities, including uncodified knowledge. Previous studies approached the overall structure 

of the local technology space by considering the average degree of shared technological 
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capabilities, and found this to be conducive of resilience in knowledge production in US metro 

areas (Balland et al. 2015), and resilience in terms of employment growth in regions of the UK 

and EU (Rocchetta & Mina 2019, Rocchetta et al. 2021). 

 

We aim to contribute to this emerging empirics by drawing on the network science literature 

on robustness, referring to the ability of a complex system to carry out its basic function even 

when some nodes or links are missing (Albert et al. 2000, Solé et al. 2008, Barabási 2016). 

This happens when the underlying network is fragmented into too many disconnected 

components (Barabási 2016, Zitnik et al. 2019), which tends to happen suddenly, rather than 

gradually (Cohen & Havlin 2009). That is, up to a threshold, removing nodes from a network 

leaves the connected part of the network containing a large proportion of nodes (i.e. the giant 

component) connected. However, when the extent of node failures passes this threshold, the 

network falls apart. Regions can be thought of as complex systems of interacting elements 

(Martin & Sunley 2007), that regularly face disturbances ranging from plant closures and 

technological change, to major economic recessions and natural disasters. For the technology 

space of a region, such disturbances would imply that the historically formed and region-

specific patterns of knowledge co-ordinations would be disrupted. In this setting the threshold 

then would signify a transition from a wide set of technological capabilities frequently 

combined with one another, to many small and disconnected clusters of technologies. Finally, 

this would mean severely disrupting the interdependencies within the local economy, and thus 

hindering economic performance. 

 

Importantly, the robustness of a network structure depends on the kind of way the nodes are 

eliminated (Albert & Barabási 2002). In particular, random failures are a frequently observed 

phenomenon in natural networks (Barabási 2016, Zitnik et al. 2019). In the context of a 

regions’s technology space such disruption could take the form of obsolescence of 

technological capabilities as new technical solutions emerge, or the exit of industries relying 

on specific technological capabilities. Moreover, as technological knowledge tends to be 

distributed across various actors (Martin & Sunley 2007), random failures could also be thought 

of as declines of firms relying heavily on specific technological capabilities, or combinations 

thereof. For instance, the largest firms increasingly tend to have a distributed technology 

profile, extending beyond their core technologies (Patel & Pavitt 1997), and so have increased 

leverage over the technology space of a region. And while technical knowledge, often 
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embedded in individual skills and capital assets, would not disappear per se, the crumbling of 

organisational structures such as firms would still likely render these capabilities to be 

temporarily inert, until redeployment in new ways can take place. Such ever-present churn of 

economic agents would then mean that the co-ordination patterns of technical knowledge in a 

region would be continuously reproduced following disturbances at various scales, translating 

into resistance before and recovery and renewal after the disruption.  

 

We note that random failure represents an agnostic approach towards the interdependencies 

between nodes. Yet, it stands to reason that technological and economic shocks could follow 

along the existing structure of the network. For the technology space of a region this would 

mean that the inability to rely on one of the locally available technological capabilities would 

also impact the use of technological capabilities that are frequently combined with the missing 

one. Hence, disturbances in core technological capabilities that are used by many key actors 

could trigger a cascade of failures across the technology space of the local economy. In a 

broader context it is widely documented that natural, social and economic systems are sensitive 

to such cascades (Acemoglu et al. 2012, Barabási 2016, Zitnik et al. 2019, Lengyel et al. 2020). 

Networks with few nodes having many connections and many other nodes having just a few, 

such as a technology space with a core of frequently combined capabilities, would be more 

robust against random disturbances, due to having only a small number of critical technologies 

with respect to its cohesion. However, such networks are highly susceptible to the failures of 

these hubs. For these reasons, we expect that the economic resilience of a region would depend 

on the robustness of its technology space. 

 

3. Data and Methods 

 

This paper will test this expectation in the context of European metropolitan regions' 

technological capability bases for the test-case of the 2008 economic crisis. Amidst overall 

downturn, cities across Europe proved to be key in resistance to and recovery from the global 

financial crisis, with some capital regions being responsible for creating more than 50% of new 

jobs since 2006 in their respective country (OECD 2019). However, other capital metro regions 

have been hit hard, and recovery overall was highly uneven across European regions (Dijkstra 

et al. 2015). All in all, recovery in the aftermath of the global economic crisis was slow, as it 

took many regions more than eight years to reach pre-crisis levels of per capita GDP (OECD 
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2019). Key insights into this variation in regional resilience show that pure urban size was not 

sufficient for resilience: among others, the quality of economic activities and production factors 

hosted were crucial in this context (Capello et al. 2015). Furthermore, EU regions with a higher 

share of population in commuting areas (but not in cities per se), and with a large share of 

medium and high-tech industries were found to be more resilient in the short-run (Brakman et 

al. 2015). Findings on US metropolitan areas and UK and EU regions also stress the importance 

of technological structure in limiting the severity of crisis events (Balland et al. 2015, 

Rocchetta & Mina 2019, Rocchetta et al. 2021). By focusing on European metropolitan areas, 

we provide novel evidence cutting across national borders on the structural determinant of 

regional resilience leading to the varied impact of the 2008 crisis in Europe. 

 

3.1. Data and spatial unit of analysis 

 

We rely on two different data sources for the investigation. First, we make use of the 

Cambridge Econometrics' European Regional Database (ERD) as a source of economic 

measures covering the period of 2006-2015. ERD contains a wide range of demographic and 

economic data for EU 28 countries at the regional level. Second, we use patent data from the 

European Patent Office (EPO) PATSTAT database that covers all European NUTS3 regions to 

construct our networks of technological capabilities. Patents are a frequently used source of 

data on the structure and evolution of technological capability bases within regions (Kogler et 

al. 2013, 2017, Boschma et al. 2015, Rigby 2015, Balland & Rigby 2017). At the same time, 

the drawbacks of patent data are widely acknowledged in the literature (Ter Wal & Boschma 

2009). Industries vary in propensity to rely on patents for protecting intellectual property (Graf 

& Henning 2009), and patents provide only a partial account on productive knowledge in 

particular, and locally available capabilities more generally. These drawbacks are offset by a 

wide coverage of regions across Europe, as well as a unique level of detail on technological 

capabilities in particular. All patents in the data have been assigned to at least one, but most of 

the time multiple classification terms (CPC) indicating the technological knowledge domain to 

which the patent belongs to. CPC codes are following a strict nested structure, which we use at 

the 4-digit level, yielding 654 different categories. 

 

We opt for metropolitan areas across Europe as the spatial unit of analysis, because local labour 

markets tend to be combinations of multiple administrative units, and technological capabilities 
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reflected in patents are more likely to be of relevance for these regions. While our theoretical 

arguments stand for non-metropolitan regions as well, this choice implies that our empirical 

findings do not extend to these regions. Nevertheless, our analysis contributes to the 

understanding of regional resilience, as it complements network-based studies of urban 

resilience in US metro areas (Balland et al. 2015, Moro et al. 2021), with hitherto lacking 

evidence from the European context. We identify metropolitan areas using the Urban Audit's 

Functional Urban Area of at least 250 000 inhabitants, as identified by EUROSTAT1. 

According to this definition, each metropolitan area consists of at least one NUTS3 region, and 

also includes adjacent NUTS3 regions if more than 50% of the population belongs to the 

commuter belt around the city. This approach adjusts for the potential bias caused by 

commuting, as the borders of the NUTS3 regions reflect artificial constraints.   

 

3.2. Dependent variable 

 

Regional economic resilience is frequently measured by employment (e.g. Fingleton et al. 

2012, Han & Goetz 2015, Rocchetta & Mina 2019). But while the shift of employment clearly 

reflects a capacity of the region to adapt to exogenous shocks, it is a measure of resilience as 

an outcome rather than a source. Boschma (2015) points out that a distinction is needed between 

cause and effect of regional resilience: structures, networks and institutions are main 

determinants of regional resilience, while a desirable level of economic outcome is an 

indication of resilience. Hence, a resilient structure makes a resilient region. In the empirical 

analysis, we link changes in employment rate to the underlying robustness of the technological 

capability base. We define our dependent variable as follows: 

 

𝐸𝑀𝑃𝑅𝐴𝑇𝐸_𝐶𝐻𝐴𝑁𝐺𝐸𝑖 = (
𝐸𝑀𝑃𝑖,2012

𝑃𝑂𝑃𝑖,2012
) (

𝐸𝑀𝑃𝑖,2006

𝑃𝑂𝑃𝑖,2006
)⁄  (1) 

 

This variable represents the change in employment rate (share of population employed, 

𝐸𝑀𝑃𝑖 𝑃𝑂𝑃𝑖⁄ ) for each European metropolitan region (𝑖) between 2006 and 2012. This 

timeframe of the dependent variable was chosen because 2006 represents the last year in which 

no region conceivably experienced the crisis yet, while 2012 was chosen to represent our 

expectation, based on related studies (e.g., Moro et al. 2021), that the pre-crisis network 

                                                           
1 https://ec.europa.eu/eurostat/web/metropolitan-regions/background 
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structure of local technologies matters in the early (resistance) stage of the crisis. Restructuring 

later on would likely alter the configuration of and combinatorial patterns in regions, which 

requires considering a more dynamic network setting. This however goes beyond the confines 

of this paper. Robustness tests on alternative time window specifications are provided in 

Section 4.3.   

 

As the propensity for patenting differs across industries, the technological capability base of a 

region is likely most relevant for local industries with more patenting, such as in manufacturing 

(EPO & EUIPO 2019). We account for this by comparing model estimates using employment 

change for all sectors and for the industry sector in particular (B-E sections of NACE Rev. 2). 

The latter version of the dependent variable indicates wider dispersion during the 2008 crisis 

(Figure 1). 

 

Figure 1. The distribution of the dependent variable by employment categories. 

 

 

3.3. Independent variable: network robustness 

 

To arrive at our measure of technology network robustness, we first constructed technology 

networks for each European metropolitan area. In these networks, each node represents a 

technological capability (one of 654 CPC classes), while the weight of links are proportional 
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to the number of patents that combine the pair of technologies, thus representing the frequency 

with which the two capabilities are combined in a region. Each network represents local 

patterns of combination, which means that the existence and weight of a link between the same 

two technologies varies from region to region. This is important, as links here represent which 

technologies are combined locally, while network construction in regional diversification 

studies necessarily puts emphasis on what could be related to the existing portfolio of the region 

based on information from other places. Hence, relatedness in our study is considered a more 

local, than global characteristic of technological capabilities, in line with recent call by 

Boschma (2017) for more exploration on the geographical aspect of relatedness itself. 

 

Next, let Ω denote the amount of node removal that a region's technology network could 

withstand without being fragmented into many unconnected components. As argued earlier, 

this would disrupt the ability of a region to achieve previous levels of economic outcomes. 

Formally we identify this threshold of connectedness by the Molloy-Reed criterion for having 

a giant component (i.e. a part of the network that contains essentially all nodes or links) (Molloy 

& Reed 1995): 〈𝑘2〉 〈𝑘〉⁄ > 2, where 〈k2〉 is the average squared number of links of nodes and 

〈k〉 is the average number of links each node has. Accordingly, Ω ranges on [𝜀, 1), where 

𝜀 represents the smallest possible value that is greater than zero, while the measure never goes 

up to 1, as no such system could exist that would survive the elimination of all of its nodes. 

Our expectation is that regions with a high Ω would be better able to withstand an economic 

shock than regions with a low Ω. 

 

We introduce the parameter 𝜆, ranging on [0,1], to operationalise the extent to which the 

degree-distribution (i.e. the propensity of specific technological capabilities to be combined) is 

considered in the removal process. 𝜆 equals to 1 if technological capabilities with the highest 

level of degree centrality are removed, while 𝜆 = 0 represents the case of random removal. In 

between, 𝜆 = 0.5 for instance, would imply a removing process considering the same weight 

for nodes with high degree centrality and randomly selected nodes. 𝛺𝜆=1 and 𝛺𝜆=0 together 

define two extremes of network robustness against an economic shock. Note that the aim here 

is not to simulate explicit shock-propagation patterns but rather to measure the capacity of a 

region to lose technological capabilities through technological change or repeated plant 

closures.  
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Figure 2 illustrates the measurement approach to network robustness for the case of Dublin's 

technological space. Subfigure 2A shows the full network without any node removal. The 

colour of a node represents the broad economic sector that primarily utilizes that specific 

technology class, while the node size corresponds to the number of patents belonging to the 

technology class. The width of the link between two nodes is proportional to the co-occurrence 

of the two technology classes on patents. Subfigure 2B Shows 40% of nodes removed from the 

network randomly. When we remove the nodes randomly from the network, the magnitude of 

the average-degree decreases proportionally to the number of nodes removed. In Subfigure 2C 

40% of the nodes are removed based on the number of connections. We can observe that with 

40% of random removal the giant component still exists and technologies still connect to each 

other, while the same amount of a targeted removal fragments the network into unconnected 

components (see more detailed illustrations in SI Figure 1 and 2). 

 

Figure 2. Random and targeted elimination of technological capabilities from Dublin's 

technology space (40% of node removal). 

 

 

3.4. Control variables 

 

In the econometric estimation we control for a number of structural variables that likely also 

relate to the resilience of regions. First, we include related and unrelated variety, identified as 

key structural characteristics with respect to resilience (Xiao et al. 2018, Rocchetta & Mina 
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2019, Rocchetta et al. 2021). Measured through entropy decomposition (Frenken et al. 2007), 

unrelated variety (𝑈𝑉) measures the entropy of technology codes between higher-order groups 

(1-digit level), and related variety (𝑅𝑉) measures the weighted average entropy within the 

group (3-digit level)2. Unrelated variety is given by: 

 

𝑈𝑉 = ∑ 𝑃𝑔 log2 (
1

𝑃𝑔
)

𝐺

𝑔=1

 (2) 

 

where 𝑃𝑔 is the share of local patents falling into a broad technological group 𝑆𝑔  

(𝑔 =  1, . . . , 𝐺). Related variety is given by:  

𝑅𝑉 = ∑ 𝑃𝑔 ∑
𝑝𝑖

𝑃𝑔
𝑖∈𝑆𝑔

log2 (
1
𝑝𝑖

𝑃𝑔

)

𝐺

𝑔=1

 

 

(3) 

where 𝑃𝑔 = ∑ 𝑝𝑖𝑖∈𝑆𝑔
 the sum of shares of patents of a 3-digit class 𝑖 within the 1-digit group 

𝑆𝑔. Based on the arguments laid out in Section 2 we expect positive coefficients for 𝑈𝑉 and 

𝑅𝑉. While these variables aim at capturing the global structure of technologies within a region, 

they rest on an ex ante assumption of relatedness by which technology groups are defined. 

Hence, we also expect that our network robustness provides more accurate account of these 

overall relatedness patterns.   

 

Second, we control for average clustering, which is the probability that two neighbours of a 

randomly selected node link to each other (Barabási 2016). In the context of regions' 

technological capability base, a higher level of average clustering would indicate a more 

tightly-knit core of frequently combined technologies. Formally, the clustering coefficient 

shows the degree to which the neighbours of a given node are connected to each other: 

 

𝐶𝑗 =
2𝐿

𝑘𝑗(𝑘𝑗 − 1)
 (4) 

 

                                                           
2 For an overview of the CPC classification scheme, see 

https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table 

https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table
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where 𝐿 is the number of links between 𝑘𝑗 neighbours of node 𝑗. 𝐶𝑗 = 0 if there is no connection 

between the neighbours of technology 𝑗, while it gives a value of 1 when all the neighbours of 

𝑗 are connected. The average clustering coefficient (〈𝐶〉) is defined by taking the average of 

node-level clustering values. Since clustering is sensitive to the size of the network (Barabási 

2016), we normalize these observed average clustering values with those of an Erdős-Rényi 

random graph (𝐶𝐸𝑅) with the same number of nodes and average number of links for each node 

as the observed network. Our final variable can be expressed as: 

 

𝐶′ =
〈𝐶〉

𝐶𝐸𝑅
 (5) 

 

Third, accessing knowledge flows from other metropolitan areas may compensate for 

disturbances to the technological capability base and so may contribute to resilience. Hence, 

following Balland et al. (2015), bridging (𝐵′) is measured as the normalized betweenness 

centrality score for each region based on their position in the inter-regional collaboration 

network. This comes from the co-inventor collaborations that connect European metropolitan 

areas to one another. The strength of the connection between two regions is proportional to the 

weighted number of patents that list at least one inventor in each region. Betweenness captures 

how critical the region is as a bridge between other regions.  

 

Finally, we include controls for regional socio-economic characteristics. The level of 

employment rate (𝐸𝑀𝑃𝑅𝐴𝑇𝐸) is included to account for that growth from a higher base level 

is generally more difficult. Population in the metropolitan region (𝑃𝑂𝑃) is added to control for 

urban size and scaling, as evidence from US metropolitan areas indicates a disproportionate 

increase of both productivity and quality of innovative output with population (Mewes 2019). 

Lastly, the volume of gross value added (𝐺𝑉𝐴), measured as the net result of outputs deflated 

to 2005 prices in Euro, is included to control for the wealth and the quality of economic 

activities and production factors that were found to be crucial for resilience beyond pure urban 

size (Capello et al. 2015). 

 

Descriptive statistics on and correlation coefficients between these variables are reported in SI 

Table 1, indicating a high correlation between the network robustness measures and related 

variety in particular. This is expected as both measures aim at capturing the overall structure 
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of local technological capability base. Additionally, the two extreme 𝜆 parametrizations of 

network robustness correlate substantially, however they enter models separately. Subsequent 

analysis of variance inflation factors (VIF)3 within the main regression models indicates that 

multicollinearity should not be a substantial issue in the econometric models, as mean VIF 

values remain below 3.4 in the models (see individual VIF values in SI Table 2). Nevertheless, 

additional robustness checks are provided in Section 4.3 that lend support to the main finings. 

 

3.5. Econometric model 

 

To analyse the association between regional resilience in terms of employment rate change and 

technology network robustness, we apply a linear regression model. While the unit of 

observation follows the EUROSTAT classification of the European metropolitan areas, we 

cannot treat the observations as an independent random sample of cities across Europe. Hence, 

the employment residual is likely to be correlated within national borders. Moreover, regional 

resilience is linked to being embedded in the national institutional context (Webber et al. 2018). 

To overcome this potential bias, we use clustered standard errors on the country level. Our 

model specification is the following: 

 

𝐸𝑀𝑃𝑅𝐴𝑇𝐸_𝐶𝐻𝐴𝑁𝐺𝐸𝑖 = 𝛼 + 𝛾1Ω𝑖
𝜆 + 𝛽1[ℤ𝑖] + 𝛽2[𝐴𝑖] + 𝑒𝑖 (6) 

 

Here 𝐸𝑀𝑃𝑅𝐴𝑇𝐸_𝐶𝐻𝐴𝑁𝐺𝐸𝑖 captures regional resilience as outcome based on the change in 

employment rate from 2006 to 2012 for a region (𝑖). The coefficient of Ω𝑖
𝜆 captures the 

association between technology network robustness and economic resilience. Separate models 

are estimated for the two extreme values of the 𝜆 parameter concerning node removal. ℤ𝑖 is a 

collection of control variables that describes structural aspects of the technological capability 

base of a region: related- and unrelated-variety, average clustering, and bridging position, 

measured for the base year of 2006. 𝐴𝑖 stands for a vector of socio-economic control variables: 

the base level of employment rate, gross value added, and the population of the region. 𝑒𝑖 refers 

to the normally distributed error term of the base year 2006. 

                                                           
3 VIF measures the linear association between an independent variable and all the other independent variables. A 

VIF value of higher than 5 warrants further investigation, and a value of higher than 10 indicates a high chance 

of multicollinearity (Rogerson 2001). 
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Figure 3. Random and targeted removal curves for selected metropolitan areas across Europe. 

 

Note: The figure shows the tolerance of metropolitan regions against targeted and random elimination based on their technological network (2006 – 2008). The green series of 

dots refers to targeted, the yellow series of dots refers to random elimination of technologies, while the red dashed line indicates the threshold for the collapse of the giant 

component. Using the Molloy-Reed criterion, a giant component exists if 〈𝑘2〉 〈𝑘〉⁄   is higher than 2. 𝛺𝜆=0 and 𝛺𝜆=1 denotes the amount of eliminations the city can tolerate 

with a functioning network. 
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4. Results 

 

4.1. Technology network robustness across metropolitan regions of Europe 

 

First, we present exploratory results on the robustness of technological capability networks for 

a selection of eight European metropolitan areas to appraise its spatial heterogeneity. Based on 

Figure 3 the first noticeable feature of these metropolitan technology networks is that they are 

robust to a set of random declines in capabilities (𝜆 = 0) but much more fragile to the targeted 

removal of their most well-connected technologies (𝜆 = 1). That is, the technology structures 

of these regions do not fragment to many disconnected components even after a series of 

technological capabilities disappear at random, following for instance repeated plant closures 

or technological change. However, the same regions are very much vulnerable to disturbances 

of a similar magnitude to the capabilities that are most frequently combined within the region. 

For instance, for the technology space of Paris to reach its threshold for becoming fragmented 

into many disconnected components, almost 90% of its technological capabilities would need 

to be removed, while the same network reaches this threshold after removing only 37% of its 

most connected (most frequently combined) technological capabilities. Consequently the fact 

that regions tend to have a discernible knowledge profile with some core capabilities (Kogler 

et al. 2013, Rigby 2015, Boschma et al. 2015) is reflected in their structural robustness against 

economic and technological disturbances. More broadly, this dual characteristic is also found 

in collaboration, communication and infrastructure networks including scientific 

collaborations, mobile phone calls and the world wide web (Barabási 2016).  

 

Second, we observe a considerable variation of technology network robustness across 

metropolitan areas. Munich for instance can withstand the removal of 36% of its most well-

connected technologies before the fragmentation of its technology network, while Manchester's 

technology structure can tolerate the removal of only 15% of its frequently combined 

technologies (Figure 3). More broadly, the most robust technology networks are found in the 

European core within the London-Paris-Milan-Munich-Hamburg area, with some additional 

national capitals such as Madrid (Figure 4). There are exceptions however as Dublin for 

instance shows relatively low robustness due to its more clustered technology space (Kogler & 

Whittle 2018). Hence, robust technology networks are not a privilege of capital regions. All the 

more so as regions with high-tech industries like Stuttgart, Mannheim and Basel have a robust 



22 
 

technological capability base. Conversely some traditional industrial regions like Liberec, 

Plzen or Ostrawa have a highly vulnerable technology structure according to our measurement. 

Finally, while Paris, Berlin, London or Brussels have a high level of network robustness against 

disturbances to their most frequently combined technologies, most capitals in Central and 

Eastern Europe are found to be more vulnerable to technological shocks. This seems to be is in 

line with the documented pattern that the resistance and recovery of capital metro regions in 

relation to the 2008 crisis was highly uneven in European (Dijkstra et al. 2015). 

 

Figure 4. Mapping the geography of technology network robustness across European 

metropolitan regions. 

 

 

4.2. The role of technology network robustness during the 2008 recession 

 

Next, we test the association between the robustness of local technology spaces and the change 

of employment rate using the 2008 recession as a test-case, linking employment with 

technological network structure as a potential determinant of resilience. Table 2 presents the 

findings from the OLS estimation on this relationship. Here, the dependent variable is 

alternating between employment in all sectors of the local economy (odd-numbered columns), 

and employment within industry (even-numbered columns). 
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Table 2. Main regression results. 

  (1) (2) (3) (4) (5) (6) 

 

All 

sectors 
Industry 

All 

sectors 
Industry 

All 

sectors 
Industry 

Ω𝜆=0   0.0594 0.1046***   

   (0.038) (0.036)   

Ω𝜆=1     0.1618** 0.2487*** 

     (0.076) (0.079) 

𝑈𝑉 0.0216 0.0023 0.0403* 0.0161 0.0436** 0.0212 

 (0.02) (0.023) (0.021) (0.026) (0.02) (0.025) 

𝑅𝑉 0.0545*** 0.0758** 0.0208 0.0372 0.0205 0.0388 

 (0.018) (0.03) (0.015) (0.027) (0.015) (0.027) 

𝐶′ -0.0035*** -0.0035* -0.0755** -0.0385 -0.0855** -0.0561 

 (0.001) (0.002) (0.034) (0.048) (0.034) (0.052) 

𝐵′ 0.6184 0.2647 0.5024 0.069 0.4798 0.0583 

 (0.444) (0.537) (0.480) (0.620) (0.467) (0.633) 

log(𝐺𝑉𝐴) -0.0569** -0.0656 -0.0504* -0.0607 -0.0469 -0.0562 

 (0.027) (0.039) (0.028) (0.041) (0.028) (0.042) 

log(𝑃𝑂𝑃) 0.0159 -0.0139 0.0494 -0.019 0.0508 -0.0224 

 (0.048) (0.033) (0.056) (0.035) (0.055) (0.035) 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) 0.0019 0.0065 -0.0371 0.0071 -0.0425 0.0053 

 (0.038) (0.016) (0.046) (0.017) (0.043) (0.017) 

Constant 1.2406*** 1.4044*** 1.2078*** 1.4034*** 1.1993*** 1.3947*** 

 (0.122) (0.160) (0.140) (0.174) (0.139) (0.176) 

Clustered SE Yes Yes Yes Yes Yes Yes 

Mean VIF 3.51 3.51 3.38 3.38 3.12 3.12 

R2 0.192 0.165 0.209 0.191 0.216 0.195 

Adj. R2 0.173 0.146 0.184 0.166 0.192 0.170 

Observations 269 269 269 269 269 269 

Note: * 𝑝 < 0.1; ** 𝑝 < 0.05; *** 𝑝 < 0.01 

 

Column (1) and (2) show the baseline model with only the control variables. Regarding the 

controls on socio-economic conditions, we find that the level of gross value added (log(𝐺𝑉𝐴)) 

has a significant negative coefficient. While this negative coefficient is consistent across 

specifications, its significance is not. For average clustering (𝐶′) within the local technology 

space, we find a negative and significant effect on resilience, indicating that regions with a 

tightly-knit core of technological capabilities are more vulnerable to economic shocks. Finally, 
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bridging (𝐵′), aimed to capture that regions may compensate for missing technological 

capabilities by having an advantageous position in terms of inter-urban knowledge flows 

(Balland et al. 2015), has a consistent positive coefficient across specifications, however it is 

not statistically significant. 

 

In models (3) and (4) the measure for network robustness (𝛺) is introduced with a parameter 

of 𝜆 = 0, representing the aspect of robustness where the technological capability base of 

regions is disturbed by the random elimination of capabilities. The coefficient is positive, but 

significant in particular for the model considering only the employment in industry. The 

coefficient indicates that those metropolitan regions were more resilient when facing the 2008 

crisis that would be able to withstand a larger number of declining technological capabilities. 

Model (5) and (6) test the network robustness for the parameter value of 𝜆 = 1, reflecting how 

vulnerable a region's technological capability base is to shocks to the most frequently combined 

technological capabilities. We find that network robustness has a positive and significant 

association with resilience, regardless of limiting the dependent variable for industry. More 

generally, we find a positive association between technology network robustness and predicted 

employment rate growth in industry for a range of 𝜆 parameter values (Figure 5), indicating 

that the network structure of the local technological capability base indeed conditions the 

resistance of regions to economic shocks.   

 

Figure 5. Regression coefficients of technology network robustness for different levels of 𝜆. 
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We find that related variety (𝑅𝑉) has a positive association with economic resilience, however 

the coefficient loses its significance once network robustness enters the model. This suggests 

first that the learning and recombination potential attributed to related variety in the literature 

is indeed conducive of resilience, as reflected in previous findings on diversification during 

crisis (Xiao et al. 2018). This also fits to a broader set of findings showing that the structure of 

local technology space makes them more resilient in terms of employment (Rocchetta & Mina 

2019, Rocchetta et al. 2021), or inventive activity (Balland et al. 2015), and that European 

regions with a higher share of medium and high-tech industries had higher resilience (Brakman 

et al. 2015).  

 

Second, the disappearing statistical significance indicates that our measure of technology 

network robustness captures better the structure and fragmentation of the local technology 

space. As argued earlier, related variety measured based on an ex ante definition of relatedness 

partially ignores the interdependencies and local specificities of the technological capability 

base. And while the regional diversification literature made use of information on immediate 

neighbours of technologies in a technology space, the overall characterisation akin to related 

variety of such networks is less clear. We argue that this may be a reason why recent work 

tends to find no significant effect of related variety once a network-wide measure like 

technological coherence is introduced in models (Rocchetta & Mina 2019, Rocchetta et al. 

2021). Hence related variety is still in play in our findings, but it is expressed through the 

robustness of the technology network.  

 

Regarding unrelated variety we find significant positive association in models with network 

robustness specifically when focusing on employment rate in all sectors. This suggests that the 

portfolio-effect associated with unrelated variety matters above and beyond the robustness of 

the technology network, as it captures how diversified the metropolitan technology profile is 

which may prevent the formation of cascading failures during crisis.  

 

4.3. Robustness checks 

 

We performed a set of checks to test the robustness of our results on technology network 

robustness. First, as population and GVA in particular has a high correlation, we tested 

introducing the socio-economic controls in a stepwise manner alongside network robustness 
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(SI Table 3 and 4), which confirms our main finding that robustness to random and targeted 

elimination of technologies is positively associated with regional resilience. Second, we tested 

different cutoffs for the starting and end year of the analysis. In particular we rerun our main 

models considering change in employment rate between 2008 and 2012 (SI Table 5), which 

yielded similar results, except for unrelated variety that lost its statistical significance. Next, 

we extended the timeframe until 2015, the last year with an almost complete set of observation 

available in our data (SI Table 6). Our main findings remain in place for the case of employment 

in industry. This is to be expected as the ability to reconfigure the structure of the regional 

economy becomes a more dominant aspect of resilience over time compared with resistance, 

i.e. the capacity to withstand shocks (Martin 2012). Hence, employment dynamics overall will 

be increasingly determined by factors beyond the pre-crisis structure of technological 

capabilities. Still network robustness shows positive association with employment rate in 

industry in particular, where technological capabilities likely play a more important role. 

Finally, we test controlling for country-specific unobserved characteristics by estimating an 

entity-demeaned fixed-effect regression (SI Table 7). This analysis provided similar results on 

technology network robustness to our main regression specification with significant, but 

somewhat smaller coefficients. 

 

5. Conclusion 

 

The economic structure of regions is considered a crucial determinant of the resistance to and 

the recovery from economic crises (Boschma 2015, Martin & Sunley 2020). Still, it is unclear 

in general which structures are more conducive to regional economic resilience, and in 

particular how the arrangement of interdependencies in the local capability base leads to more 

or less resilient regions. In this paper, we propose a way to address this gap by connecting 

advances in network science to previous efforts to capture the role of technological and network 

structure of local economies in resilience (e.g. Balland et al. 2015, Rocchetta & Mina 2019, 

Rocchetta et al. 2021). By stress-testing the network representation of technological capability 

bases across 269 metropolitan regions in Europe, we found considerable heterogeneity in 

technology network robustness and showed that regions with a more robust technology 

network structure were more resistant to the 2008 economic crisis with respect to changes in 

employment rate in industry in particular. This association held for a range of parameter values 

representing network robustness to random disturbances to the technological capability base of 
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metropolitan regions, and the targeted elimination of their most frequently combined 

capabilities. This suggests that network robustness captures a crucial quality of the local 

capability base with respect to resilience, even when controlling for structural characteristics 

such as related and unrelated variety (entropy of patents over technology classes), and 

participation in inter-urban knowledge flows. Our findings in the European context 

complement recent efforts in connecting resilience with urban economic network structure in 

the US context (Moro et al. 2021). 

 

Hence, this paper takes steps towards integrating research on network robustness and regional 

economic resilience. However, as any other paper, our study has limitations that should be 

taken up in future research. 

 

First, we rely on the co-occurrence of technology classes on patent documents to derive local 

network structures, which, as discussed earlier, captures only a part of the local capability base. 

These technological capabilities are more relevant for economic activities of the industry sector 

(EPO & EUIPO 2019), which is reflected in our analysis. Additionally, technical knowledge 

codified in patents is likely more relevant in metropolitan areas, compared with other regions. 

As such, the present paper limits its scope to the robustness of frequent knowledge combination 

patterns within regions against disruptions, and the link of this vulnerability to overall 

economic performance in terms of employment. Therefore, there is a need to explore network 

robustness on more detailed network accounts of the regional capability base, as well as for a 

more comprehensive set of places. Prime network candidates include skill-relatedness 

networks, that represent similarities in competencies required in different industries, including 

services, and input-output networks, that allow for in-depth exploration of shock-propagation 

scenarios. A systematic analysis of metropolitan regions across Europe did not permit us to 

take up on these extensions. 

 

Second, this investigation is limited to the link between network robustness and the resistance 

to crisis in particular. However the evolutionary interpretation of regional economic resilience 

puts emphasis also on the renewal of the economic structure (Martin 2012), as well as on the 

ability to develop new growth paths in the long run (Boschma 2015). Accordingly, further 

research could adopt a dynamic approach by tracking temporal changes in the network 

robustness of the local capability base in response to a crisis, and the effect of local network 
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structure to future diversification patterns. This way one could differentiate between network 

structures that are conducive of resilience, diversification or both.   

 

Finally, technological capabilities are typically distributed across a wide range of economic 

actors and other organisations of the local economy, which we could not observe directly. This 

permitted us to stress-test local technology networks at a more crude, aggregate level, even 

though these modelled aggregate shocks are likely rooted in micro-agents. In this respect 

cluster (knowledge) networks could provide a promising setting to further test network 

robustness as a determinant of resilience, since there is already considerable knowledge on 

what determinants drive the formation of these networks, as well as how their structure relates 

to economic performance (Hermans 2021). Further investigation could also explore other, or 

more nuanced scenarios for the elimination process, such as testing for robustness against the 

elimination of specific declining technological capabilities, or technologies that are less 

compatible with green transition. Alternatively, one could explore specific shock propagation 

patterns to model precise economic crisis events. In this respect this paper tested network 

robustness in the context of a grand recession, however the anatomy of economic shocks is 

more diverse (Martin & Sunley 2020). We are convinced that the approach proposed in this 

paper merits further testing along these dimensions. 
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Supplemental Information Figure 1. Dissolving Dublin's technology space (𝜆 = 0). 

 

Notes: The colour of the node represents the broad economic sector that primarily utilizes that specific technology 

class, the size of the node corresponds to the number of patents belong to the given technology class, and the 

weight of the connection is equal to the co-occurrence of technology classes on patents. 𝛺𝜆=0 refers to the extent 

of the random failure, e.g. in sub-figure (D) 𝛺𝜆=0 = 0.4 equals to 40 percent of the nodes removed from the 

network randomly. The stability of the technological space is captured by 〈𝑘𝛺〉 〈𝑘0〉⁄ , which measures the overlap 

of the  edge distribution of the trimmed 〈𝑘𝛺〉 and the original network 〈𝑘0〉.  
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Supplemental Information Figure 2. Dissolving Dublin's technology space (𝜆 = 1). 

 

Notes: The colour of the node represents the broad economic sector that primarily utilizes that specific technology 

class, the size of the node corresponds to the number of patents belong to the given technology class, and the 

weight of the connection is equal to the co-occurrence of technology classes on patents. 𝛺𝜆=1 refers to the extent 

of the attack, e.g. sub-figure (H) 𝛺𝜆=1= 0.4 equals to 40 percent of the nodes removed based on their degree 

centrality level. The stability of the technological space is captured by 〈𝑘𝛺〉 〈𝑘0〉⁄ , which measures the overlap of 

the  edge distribution of the trimmed 〈𝑘𝛺〉 and the original network  〈𝑘0〉. 
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Supplemental Information Table 1. Descriptive statistics and pairwise correlation of variables. 

Variable Obs. Mean Std. Dev. Min. Max. 

Ω𝜆=0 269 0.430 0.235 0.000 0.890 

Ω𝜆=1 269 0.124 0.084 0.000 0.540 

𝑈𝑉 269 2.527 0.360 0.722 2.978 

𝑅𝑉 269 3.147 1.044 0.000 4.809 

𝐶′ 269 0.465 0.216 0.000 1.000 

𝐵′ 269 0.008 0.011 0.000 0.074 

log(𝐺𝑉𝐴) 269 9.624 1.003 7.083 13.222 

log(𝑃𝑂𝑃) 269 6.636 0.724 5.384 9.427 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) 269 -0.766 0.145 -1.249 -0.392 

Correlation matrix 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) Ω
𝜆=0

 1         

(2) Ω
𝜆=1

 0.879 1        

(3) 𝑈𝑉 0.491 0.365 1       

(4) 𝑅𝑉 0.808 0.643 0.678 1      

(5) 𝐶′ -0.499 -0.327 0.027 -0.402 1     

(6) 𝐵′  0.451 0.392 0.254 0.379 -0.332 1    

(7) log(𝐺𝑉𝐴) 0.663 0.533 0.528 0.706 -0.347 0.447 1   

(8) log(𝑃𝑂𝑃) 0.316 0.312 0.224 0.287 -0.138 0.347 0.773 1  

(9) log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) 0.391 0.334 0.219 0.399 -0.288 0.238 0.340 0.057 1 
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Supplemental Information Table 2. VIF values of variables in models of Table 2. 

 Model (1) - (2) Model (3) - (4) Model (5) - (6) 

𝛺𝜆=0  3.38  

𝛺𝜆=1   1.83 

𝑈𝑉 1.88 1.89 1.91 

𝑅𝑉 3.69 4.87 4.41 

𝐶′ 1.64 1.76 1.64 

𝐵′ 1.31 1.36 1.35 

log(𝐺𝑉𝐴) 7.86 7.92 7.88 

log(𝑃𝑂𝑃) 4.50 4.50 4.57 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) 1.35 1.36 1.37 

Mean VIF 3.18 3.38 3.12 
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Supplemental Information Table 3. Stepwise regression results on employment rate change for the 2006-2012 period. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Employment change in all sectors 

𝛺𝜆=0     0.0803*** 0.1551*** 0.1100*** 0.1465**     

     (0.020) (0.025) (0.021) (0.062)     

𝛺𝜆=1         0.2080*** 0.3134*** 0.2856*** 0.2937** 

         (0.057) (0.063) (0.058) (0.141) 

log(𝐺𝑉𝐴)  -0.0060  0.0126  -0.0270***  -0.0210  -0.0185**  -0.0027 

  (0.004)  (0.080)  (0.005)  (0.020)  (0.005)  (0.044) 

log(𝑃𝑂𝑃)   -0.0172** -0.0305***   -0.0278*** -0.0092   -0.0270*** -0.2438 

   (0.006) (0.010)   (0.006) (0.025)   (0.006) (0.028) 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) 0.0086 0.0231 0.0135 -0.0123 -0.0422 -0.0238 -0.0531 -0.0320 -0.0315 -0.0081 -0.0387 -0.0345 

 (0.031) (0.033) (0.031) (0.035) (0.033) (0.032) (0.032) (0.048) (0.031) (0.031) (0.032) (0.044) 

Constant 1.0000*** 1.0712*** 1.1191*** 1.0655*** 0.9271*** 1.1779*** 1.0900*** 1.1703*** 0.9440*** 1.1275*** 1.1080*** 1.1190*** 

 (0.024) (0.061) (0.049) (0.060) (0.030) (0.059) (0.470) (0.122) (0.028) (0.059) (0.047) (0.108) 

Clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Mean VIF - 1.13 1.00 2.44 1.18 1.63 1.21 3.01 1.13 1.36 1.16 2.36 

R2 0.003 0.006 0.027 0.036 0.059 0.129 0.117 0.132 0.047 0.089 0.108 0.121 

Adj. R2 0.003 0.001 0.02 0.025 0.046 0.119 0.107 0.118 0.04 0.079 0.097 0.108 

Observations 269 269 269 269 269 269 269 269 269 269 269 269 

Note: * 𝑝 < 0.1; ** 𝑝 < 0.05; *** 𝑝 < 0.01. 
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Supplemental Information Table 4. Stepwise regression results on employment rate change in industry for the 2006-2012 period. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Employment change in industry 

𝛺(𝜆=0)     0.1090*** 0.2157*** 0.1679*** 0.1622***     

     (0.032) (0.039) (0.032) (0.056)     

𝛺(𝜆=1)         0.2603*** 0.4056*** 0.4121*** 0.3458*** 

         (0.088) (0.098) (0.088) (0.112) 

log(𝐺𝑉𝐴)  -0.0096  0.0406***  -0.0399***  -0.0032  -0.0256***  0.0224 

  (0.007)  (0.012)  (0.008)  (0.029)  (0.008)  (0.029) 

log(𝑃𝑂𝑃)   -0.0389*** -0.0814***   -0.0549*** -0.0578   -0.0529*** -0.0742* 

   (0.009) (0.015)   (0.009) (0.036)   (0.009) (0.038) 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) 0.0920* 0.1146* 0.1031** -0.0197 -0.0229 -0.0492 -0.0013 -0.0019 -0.0418 -0.0741 -0.0276 -0.0063 

 (0.048) (0.093) (0.047) (0.052) (0.051) (0.050) (0.049) (0.093) (0.050) (0.051) (0.048) (0.088) 

Constant 0.9963*** 1.0630*** 1.2633*** 1.0910*** 0.8965*** 1.2548*** 1.2195*** 1.2071*** 0.9256*** 1.1792*** 1.2473*** 1.1544*** 

 (0.037) (0.093) (0.074) (0.089) (0.047) (0.092) (0.710) (0.146) (0.044) (0.092) (0.072) (0.108) 

Clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Mean VIF - 1.13 1.00 2.44 1.18 1.63 1.21 3.01 1.13 1.36 1.16 2.36 

R2 0.013 0.019 0.071 0.11 0.054 0.119 0.117 0.159 0.044 0.077 0.142 0.152 

Adj. R2 0.009 0.011 0.064 0.1 0.047 0.109 0.107 0.146 0.037 0.067 0.132 0.139 

Observations 269 269 269 269 269 269 269 269 269 269 269 269 

Note: * 𝑝 < 0.1; ** 𝑝 < 0.05; *** 𝑝 < 0.01. 
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Supplemental Information Table 5. Regression results on employment change in the 2008-2012 

period. 

  (1) (2) (3) (4) (5) (6) 

 

All 

sectors 
Industry 

All 

sectors 
Industry 

All 

sectors 
Industry 

Ω𝜆=0   0.0526** 0.0796***   

   (0.024) (0.021)   

Ω𝜆=1     0.1350** 0.1950*** 

     (0.057) (0.052) 

𝑈𝑉 0. 0061 -0.0140 0.0088 -0.0100 0.0114 -0.0064 

 (0.012) (0.018) (0.013) (0.018) (0.013) (0.018) 

𝑅𝑉 0.0261* 0.0322* 0.0190 0.0215 0.0191 0.0221 

 (0.014) (0.016) (0.012) (0.017) (0.013) (0.017) 

𝐶′ -0.0728* -0.0400 -0.0623* -0.0240 -0.0713* -0.0378 

 (0.039) (0.063) (0.034) (0.059) (0.036) (0.059) 

𝐵′ 0.5006 -0.0858 0.3768 0.2732 0.3653 -0.2812 

 (0.348) (0.759) (0.343) (0.565) (0.346) (0.594) 

log(𝐺𝑉𝐴) -0.0245 0.0059 -0.0267 -0.0025 -0.0234 0.0073 

 (0.024) (0.044) (0.024) (0.044) (0.028) (0.044) 

log(𝑃𝑂𝑃) -0.0070 -0.0506 -0.0061 -0.0493 -0.0097 -0.0545 

 (0.018) (0.038) (0.056) (0.038) (0.018) (0.038) 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) -0.0298 -0.0182 -0.0319 -0.0215 -0.0371 0.0287 

 (0.023) (0.060) (0.025) (0.062) (0.022) (0.062) 

Constant 1.1658*** 1.1398*** 1.1690*** 1.1447*** 1.1604*** 1.1322*** 

 (0.126) (0.176) (0.130) (0.179) (0.130) (0.181) 

Clustered SE Yes Yes Yes Yes Yes Yes 

R2 0.251 0.179 0.263 0.189 0.270 0.193 

Adj. R2 0.230 0.157 0.240 0.164 0.247 0.168 

Observations 269 269 269 269 269 269 

Note: * 𝑝 < 0.1; ** 𝑝 < 0.05; *** 𝑝 < 0.01 
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Supplemental Information Table 6. Regression results on employment rate change in the 2008-

2015 period. 

  (1) (2) (3) (4) (5) (6) 

 
All sectors Industry 

All 

sectors 
Industry 

All 

sectors 
Industry 

Ω𝜆=0   0.0576 0.0880**   

   (0.036) (0.039)   

Ω𝜆=1     0.1284 0.1646** 

     (0. 084) (0.079) 

𝑈𝑉 0. 0100 -0.0255 0.0129 -0.0210 0.0150 -0.0190 

 (0.015) (0.024) (0.016) (0.024) (0.015) (0.024) 

𝑅𝑉 0.0253 0.0418** 0.0175 0.0300 0.0186 0.0333 

 (0.015) (0.019) (0.014) (0.021) (0.014) (0.021) 

𝐶′ -0.0826** -0.0742 -0.0710** -0.0566 -0.0811** -0.0724 

 (0.038) (0.066) (0.032) (0.059) (0.035) (0.063) 

𝐵′ 0.6096 -0.0702 0.4740 0.2773 0.4809 -0.2351 

 (0.388) (0.824) (0.372) (0.847) (0.387) (0.869) 

log(𝐺𝑉𝐴) -0.0461 0.0305 -0.0486 -0.0342 -0.0451 0.0292 

 (0.030) (0.054) (0.031) (0.054) (0.030) (0.055) 

log(𝑃𝑂𝑃) -0.0143 -0.0195 -0.0152 -0.0181 0.0117 -0.0228 

 (0.025) (0.050) (0.025) (0.038) (0.025) (0.051) 

log(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) -0.0097 0.0868 -0.0121 -0.0832 -0.0167 0.0779 

 (0.042) (0.060) (0.042) (0.062) (0.040) (0.080) 

Constant 1.2535*** 1.1398*** 1.1257*** 1.1377*** 1.2485*** 1.1365*** 

 (0.151) (0.176) (0.155) (0.205) (0.155) (0.208) 

Clustered SE Yes Yes Yes Yes Yes Yes 

R2 0.188 0.158 0.200 0.167 0.203 0.165 

Adj. R2 0.166 0.135 0.175 0.141 0.178 0.139 

Observations 265 265 265 265 265 265 

Note: * 𝑝 < 0.1; ** 𝑝 < 0.05; *** 𝑝 < 0.01. Data for four Bulgarian and Romanian regions 

(Varna, Craiova, Constanta and Galati) were not available for 2015. 
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Supplemental Information Table 7. Regression results on employment change in the 2008-2012 

period with country fixed-effect OLS estimation. 

  (1) (2) (3) (4) 

 All sectors Industry All sectors Industry 

Ω̃𝜆=0 0.0312** 0.0774**   

 (0.015) (0.035)   

Ω̃𝜆=1   0.0606* 0.1326* 

   (0.32) (0.074) 

Constant 0.0031 0.0002 0.000 0.0003 

 (0.001) (0.004) (0.001) (0.004) 

Country FE Yes Yes Yes Yes 

Regional Controls Yes Yes Yes Yes 

Observations 269 269 269 269 

Note: * 𝑝 < 0.1; ** 𝑝 < 0.05; *** 𝑝 < 0.01. 
 

To control for country specific characteristics, we estimate the entity-demeaned fixed-effect 

regressions. First, we take the averages on both sides of our original regression equation (6) for 

the case of 𝑚 countries: 

 

1
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=
1
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1
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1
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∑[𝕫𝑖, 𝐴𝑖]

𝑚

𝑖=1

+ ∑ 𝑒𝑖

𝑚

𝑖=1

 

 

In a simpler form: 

 

𝑌𝑖̅ = 𝛼 + 𝛾1𝛺̅𝑖
𝜆 + 𝛽[𝕫̅𝑖, 𝐴̅𝑖] + 𝑒̅𝑖 

 

If we subtract it from the original regression equation, the OLS estimate of the parameter 

𝛾̃1captures the outcome of network robustness on employment controlling for time-invariant 

country specific attributes without needing to estimate m-1 country specific dummies: 

 

𝑌𝑖 − 𝑌𝑖̅ = 𝛾1(𝛺𝑖
𝜆 − 𝛺̅𝑖

𝜆) + 𝛽([𝕫𝑖, 𝐴𝑖] − [𝕫̅𝑖, 𝐴̅𝑖]) + (𝑒𝑖 − 𝑒̅𝑖) 

𝑌𝑖̃ = 𝛾̃1𝛺̃𝑖
𝜆 + 𝛽[𝕫̃𝑖, 𝐴̃𝑖] + 𝑒̃𝑖 

 


