
Constraints
https://doi.org/10.1007/s10601-023-09346-3

Computing relaxations for the three-dimensional stable
matching problemwith cyclic preferences

Ágnes Cseh1,2 · Guillaume Escamocher3,4 · Luis Quesada3,4

Accepted: 28 March 2023
© The Author(s) 2023

Abstract
Constraint programming has proven to be a successful framework for determining whether
a given instance of the three-dimensional stable matching problem with cyclic preferences
(3dsm- cyc) admits a solution. If such an instance is satisfiable, constraint models can even
compute its optimal solution for several different objective functions. On the other hand,
the only existing output for unsatisfiable 3dsm- cyc instances is a simple declaration of
impossibility. In this paper, we explore four ways to adapt constraint models designed for
3dsm- cyc to the maximum relaxation version of the problem, that is, the computation of
the smallest part of an instance whose modification leads to satisfiability. We also extend
our models to support the presence of costs on elements in the instance, and to return the
relaxation with lowest total cost for each of the four types of relaxation. Empirical results
reveal that our relaxation models are efficient, as in most cases, they show little overhead
compared to the satisfaction version.

Keywords Three-dimensional stable matching with cyclic preferences · 3dsm- cyc ·
Constraint Programming · Relaxation · Almost stable matching

B Guillaume Escamocher
guillaume.escamocher@insight-centre.org

Ágnes Cseh
cseh.agnes@krtk.hu

Luis Quesada
luis.quesada@insight-centre.org

1 Institute of Economics, Centre for Economic and Regional Studies, Budapest, Hungary

2 Department of Mathematics, University of Bayreuth, Bayreuth, Germany

3 Insight Centre for Data Analytics, Cork, Ireland

4 School of Computer Science and Information Technology, University College Cork, Cork, Ireland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-023-09346-3&domain=pdf
http://orcid.org/0000-0001-9029-5671

Constraints

1 Introduction

Defined on three instead of two agent sets, the 3-dimensional stable matching problem [39] is
a natural generalisation of thewell-known stablemarriage problem [29]. Itsmost studied vari-
ant is the 3-dimensional stable matching problem with cyclic preferences (3dsm- cyc) [47],
in which agents from the first set only have preferences over agents from the second set,
agents from the second set only have preferences over agents from the third set, and finally,
agents from the third set only have preferences over agents from the first set.

A matching is a set of triples such that each triple contains one agent from each agent
set and each agent appears in at most one triple. A weakly stable matching does not admit a
blocking triple such that all three agents would improve, while according to strong stability,
a triple already blocks if at least one of its agents improves, and the others in the triple remain
equally satisfied.

Constraint programming approaches allow one to identify instances that do not admit a
weakly or strongly stable matching—these will be in the focus of our investigation. For such
an instance, how to construct a matching that is blocked by only a few triples? Alternatively,
which matching minimises the number of justifiably disappointed agents who appear in a
blocking triple?A somewhatmore sophisticated approach is to assume that a central authority
is able to compensate blocking triples or even single agents appearing in blocking triples.
If such a compensation has been allocated, then the triple or agent withdraws their claim to
form a more advantageous coalition. How to find a matching with the lowest compensation
needed to eliminate all blocking triples?

In order to facilitate a general framework, we associate a cost with each agent. The goal
is then to minimise the total cost of triples or agents who block the matching, or have to be
compensated in order to withdraw from blocking.

1.1 Literature review

We first restrict our attention to related work in the 2-dimensional and non-bipartite sta-
ble matching settings. We mention two already established relaxations of stability and also
elaborate on problem variants with costs. Then we turn to the 3-dimensional setting, review
related work on 3dsm- cyc, and finally discuss constraint models.

1.1.1 Relaxing stability

Various stable matching problems need not admit a stable solution. The relaxation of stability
by definition necessarily involves the occurrence of blocking pairs. In the literature, twomain
relaxations have been defined.

The number of blocking pairs is a characteristic property of every matching. A natural
goal is to find a matching with the lowest number of blocking pairs; such a matching is
called almost stable. This approach has a broad literature: almost stable matchings have been
investigated in bipartite [9, 32, 34, 38] and non-bipartite stable matching instances [1, 8, 15,
20], but not in the 3-dimensional setting yet.

Agents who appear in blocking pairs in a solution are called blocking agents. Besides
minimising the number of blocking pairs, another intuitive objective is to minimise the
number of blocking agents [54]. The complexity of minimising the number of blocking
agents in a non-bipartite stable matching instance is an open problem that was posed in the

123

Constraints

seminal book of Manlove [43]. Similar, but slightly more complicated instability measures
can be found in the paper of Eriksson and Häggström [24].

1.1.2 Costs and preference negotiation in stable matching problems

Arguably the most natural extension of various matching problems is to consider graphs
with edge or vertex costs. For bipartite instances with edge costs, finding a minimum-cost
stable matching can be done in polynomial time [26, 27, 33, 36]. The same problem for
non-bipartite graphs is NP-hard, but 2-approximable under certain monotonicity constraints
using LP methods [58, 59].

Vertex costs play a role in stable matching problems if the agents are part of some type
of instance manipulation. In their theoretical study, Boehmer et al. [12] allow agents to
reshuffle their preference list. College admission is possibly the most widespread application
of stability. Surveys report that bribes have been performed in college admission systems
in China, Bulgaria, Moldova, and Serbia [35, 42]. However, preference list manipulation,
potentially done by assigning money to the affected agents, does not imply an illegal action.
The internal assignment process of humanitarian organisations [6, 53, 57] aims at stability
in the first place, but it also routinely features salary premium negotiations for staff members
sent to a less desirable location.

1.1.3 3DSM-CYC

Several applications areas have been modeled by extended 3dsm- cyc instances. Cui and
Jia [22] modeled three-sided networking services, such as frameworks connecting users,
data sources, and servers. In their setting, users have identical preferences over data sources,
data sources have preferences over servers based on the transferred data, and servers have
preferences over users. Building upon this work, Panchal and Sharma [49] provided a dis-
tributed algorithm that finds a stable solution. Raveendran et al. [52] tested resource allocation
in Network Function Virtualisation. They demonstrated the superior performance of the pro-
posed cyclic stablematching framework in terms of data rates and user satisfaction, compared
to a centralised random allocation approach.

A recent real application was described by Bloch et al. [11] who analysed the Paris public
housing market. In their work, the first agent set consists of various housing institutions
such as the Ministry of Housing, the second agent set is the set of households looking for an
apartment, and finally, the third agent set contains the social housing apartments that are to be
assigned to these households. Institutions have preferences over household-apartment pairs,
and households rank apartments in their order of preference. Cseh and Peters [21] studied
a restricted variant where the institutions have preferences directly over the households, no
matter which apartment they are matched to.

Maximum relaxations in these applications correspond to the smallest number or cost of
users, data sources, servers, households, or housing agencies, who need to be compensated
for being part of a blocking triple.

As for the complexity of 3dsm- cyc, Biró and McDermid [10] showed that deciding
whether a weakly stable matching exists is NP-complete if preference lists are allowed to be
incomplete (and each agent can only be matched to agents on their incomplete preference
list), and that the same complexity result holds for strong stability even with complete lists.
However, the combination of complete lists and weak stability proved to be extremely chal-
lenging to solve. After a series of papers [13, 25, 50] proving that small 3dsm- cyc instances

123

Constraints

always admit a weakly stable matching, Lam and Plaxton [41] recently showed NP-hardness
for instances with at least 90 agents per agent set—this is also the size of the smallest known
no-instance.

1.1.4 CPmodels for 3DSM-CYC

Several constraint models have been developed for the bipartite stable matching problem and
its many-to-one variant [31, 44, 48, 55, 60, 61]. We build upon the recent work of Cseh et
al. [17], who introduced five constraint models for 3dsm- cyc. Besides capturing both weak
and strong stability, they translated three fairness notions into 3-dimensional matchings.

1.2 Our contribution

In this paper we study four types of relaxation to 3dsm- cyc, based on two established and
two new relaxation principles. For each of these types we propose CP approaches that are
built on top of the best two approaches from Cseh et al. [17]. We carry out a comprehensive
empirical evaluation on a generated data set that includes both satisfiable and unsatisfiable
instances. We analyse the behaviour of our constraint models based on different preference
structures, cost functions, and their scalability.We introduce the notion of important elements,
elaborate on the relation of this notion to relevant notions in the state of the art, and study the
behaviour of 3dsm- cyc in the presence of important elements. The results of the evaluation
give insight into the convenience of the introduced types of relaxation, in particular in those
cases where the four methods agree on the optimal relaxation.

1.3 Structure of the paper

We introduce notation and define the four relaxations of stability formally in Section 2.
The constraint models we work on are described in Section 3. Our experimental results are
presented in Section 4. A separate section (Section 5) is devoted to the notion of important
elements and our experimental results on it. Finally, we conclude in Section 6.

A preliminary version of this study has appeared in the proceedings of CP 2022 [18].
Section 5 contains completely new material compared to that version.

2 Notation and problem definitions

In Section 2.1 we formally define input and output formats for 3dsm- cyc, using previous
notations [17]. The fourways of relaxing stability are then discussed in Section 2.2.Minimum
correction sets are defined inSection 2.3. Finally,matching costs are introduced inSection 2.4.

2.1 Problem definition

Input and output. Formally, a 3dsm- cyc instance is defined over three disjoint sets of agents
of size n, denoted by A = {a1, . . . , an}, B = {b1, . . . , bn}, andC = {c1, . . . , cn}. Amatching
M corresponds to a disjoint set of triples, where each triple, denoted by (ai , b j , ck), contains
exactly one agent from each agent set. Each agent is equipped with her own preferences in
the input. The cyclic property of the preferences means the following: each agent in A has

123

Constraints

a strict and complete preference list over the agents in B, each agent in B has a strict and
complete preference list over the agents in C , and finally, each agent in C has a strict and
complete preference list over the agents in A—where strict and complete list means a strict
total order of the set. These preferences are captured by the rank function, where rankai (b j)

is the position of agent b j in the preference list of ai , from 1 if b j is ai ’s most preferred agent
to n if b j is ai ’s least preferred agent.

Preferences over triples. Thepreference relation of an agent on possible triples is derived nat-
urally from the preference list of this agent. Agent ai is indifferent between triples (ai , b j , ck1)

and (ai , b j , ck2), since she only has preferences over the agents in B and the same agent b j

appears in both triples. However, when comparing triples (ai , b j1 , ck1) and (ai , b j2 , ck2),
where b j1 �= b j2 , ai prefers the first triple if rankai (b j1) < rankai (b j2), and she prefers the
second triple otherwise. The preference relation is defined analogously for agents in B and
C as well.

Weak and strong stability. A triple t = (ai , b j , ck) is said to be a strongly blocking triple to
matching M if each of ai , b j , and ck prefer t to their respective triples in M . Practically, this
means that ai , b j , and ck could abandon their triples to form triple t on their own, and each of
them would be strictly better off in t than in M . If a matching M does not admit any strongly
blocking triple, then M is called a weakly stable matching. Similarly, a triple t = (ai , b j , ck)

is called a weakly blocking triple if at least two agents in the triple prefer t to their triple in
M , while the third agent does not prefer her triple in M to t . This means that at least two
agents in the triple can improve their situation by switching to t , while the third agent does
not mind the change. A matching that does not admit any weakly blocking triple is referred
to as strongly stable. By definition, strongly stable matchings are also weakly stable, but not
the other way round. Observe that it is impossible to construct a triple t that keeps exactly two
agents of a triple equally satisfied, while making the third agent happier, since the earlier two
agents need to keep their partners to reach this, which then defines the triple as one already
in M .

2.2 Relaxing stability

We examine four different ways to relax stability in 3dsm- cyc. Two of them are standard in
the stable matching literature and are based on minimising the number of blocking elements,
see Section 2.2.1. The other two relaxation notions are introduced in Section 2.2.2, and they
build upon elements that are prohibited to be part of a blocking triple. We remark that all
four relaxations can be translated to other stable matching problems as well.

2.2.1 Almost stable matchings

Let sbt(M) denote the set of strongly blocking triples, and wbt(M) denote the set of weakly
blocking triples to a matching M . Since strongly blocking triples are also weakly blocking,
sbt(M) ⊆ wbt(M).

Definition 1 A strong triple-almost stable (TAS) matching is a matching that minimises the
function |wbt(M)| over all matchings M. Analogously, a weak TAS matching is a matching
that minimises the function |sbt(M)| over all matchings M.

If the instance admits a strongly stable matching, then it minimises both functions, but
otherwise, there is no connection between the sets of weak TAS and strong TAS matchings.

123

Constraints

The agents involved in a strongly blocking triple are called strongly blocking agents, and
form the set sba(M). Analogously, agents involved in any weakly blocking triple are called
weakly blocking agents, and form the set wba(M). Notice that sba(M) ⊆ wba(M). A natural
objective is to find a matching that minimises the functions |sba(M)| or |wba(M)|.

Definition 2 A matching that minimises |sba(M)| is called weak agent-almost stable (AAS),
while a matching that minimises |wba(M)| is called strong AAS.

Notice that weakAAS and strongAASmatchings are not identical toweakTAS and strong
TAS matchings. As an example, consider two matchings M1 and M2 such that wbt(M1) =
{(a1, b1, c1), (a1, b1, c2), (a1, b1, c3)} and wbt(M2) = {(a1, b1, c1), (a2, b2, c2)}. We have
|wbt(M1)| = 3 and |wbt(M2)| = 2, so M2 is a better strong TAS candidate than M1. However
|wba(M1)| = |{a1, b1, c1, c2, c3}| = 5 and |wba(M2)| = |{a1, a2, b1, b2, c1, c2}| = 6, so
M1 is a better strong AAS candidate than M2.

2.2.2 Accommodating elements

Instead of minimising the number of blocking elements, we can eliminate them altogether
by setting some agents to be accommodating. Accommodating agents never report that they
are part of a blocking triple, which eliminates all blocking triples containing at least one of
those agents. In a realistic scenario, accommodating agents are allocated compensation for
their poor match.

Definition 3 A weak minimally-accommodating stable (MAS) matching is a matching that
minimises the number of accommodating agents needed to eliminate all of its strongly block-
ing triples. Analogously, a strong MAS matching is a matching that minimises the number of
accommodating agents needed to eliminate all of its weakly blocking triples.

Notice thatMASmatchings are distinct fromAASmatchings. As an example, consider the
matchings M2 from before, where wbt(M2) = {(a1, b1, c1), (a2, b2, c2)}, and the matching
M3 such that wbt(M3) = {(a1, b1, c1), (a1, b2, c2), (a1, b3, c3)}. We have |wba(M2)| = 6
and |wba(M3)| = 7, so M2 is a better strong AAS candidate than M3. However, we need both
an agent from {a1, b1, c1} and an agent from {a2, b2, c2} to be accommodating to eliminate the
blocking triples in wbt(M2), while setting a single agent, a1, to be accommodating eliminates
all blocking triples in wbt(M3). Therefore M3 is a better strong MAS candidate than M2.

We can extend the definition of accommodating to groups of agents. Agents x and y
from different agent sets form an accommodating pair if they are prevented from appearing
together in a blocking triple. In 3dsm- cyc, exactly one of the two agents has preferences
over the other agent, without loss of generality let us assume that it is x . Setting x and y to
be an accommodating pair expresses that x receives compensation for not being matched to
y specifically. However, x can appear in a blocking triple with another agent from the set of
y, and y also can block with any other agent than x . This compensation is thus less powerful
than the previous one.

Definition 4 A weak minimally-pair-accommodating stable (MPAS) matching is a matching
that minimises the number of accommodating pairs needed to eliminate all of its strongly
blocking triples. Analogously, a strong MPAS matching is a matching that minimises the
number of accommodating pairs needed to eliminate all of its weakly blocking triples.

123

Constraints

Table 1 Different ways of interpreting relaxation

single agent more than one agent

minimise the number agent-almost stable triple-almost stable

of blocking elements (AAS) (TAS)

minimise the number of minimally-accommodating minimally-pair-accommodating

accommodating elements stable (MAS) stable (MPAS)

The sets of MPAS and MAS matchings are incomparable. As an example, consider the
matching M3 from before, where wbt(M3) = {(a1, b1, c1), (a1, b2, c2), (a1, b3, c3)}, and
the matching M4 such that wbt(M4) = (a1, b2, c3), (a1, b2, c2), (a2, b3, c1). Only the agent
a1 needs to be accommodating to eliminate all blocking triples in wbt(M3), but no single
agent appears in all blocking triples of wbt(M4), so M3 is a better strong MAS candidate
than M4. On the other hand, we can eliminate all blocking triples in wbt(M4) by setting only
two pairs to be accommodating, while we need three to do the same for wbt(M3). Therefore
M4 is a better strong MPAS candidate than M3.

Further extending MPAS to groups of three agents would mean minimising the number
of accommodating triples, which is equivalent to TAS.

Even though minimising the number of accommodating elements has been first studied
in this work, preventing agents or pairs from blocking has been studied in the literature.
Instances with pairs that cannot block, but can be part of a matching, have received interest,
as they model a ubiquitous scenario in applications [5]. Agents are often not aware of the
preferences of others, not even once the matching has been specified. This typically occurs
in very large markets, such as job markets [4], or if the preferences are calculated from
some data, rather than provided directly by the agents, such as in medical [14] and social
markets [3]. Two agents who cannot exchange their preferences form a so-called free pair.
According to the definition of stability with free pairs, if a matching is only blocked by free
pairs, then it counts as stable, as no pair of agents can undermine its stability. The existence
of free pairs can only enlarge the set of stable solutions.

Kwanashie [40, Sections 4 and 5] performed an exhaustive study on various stable match-
ing problems with free pairs. Cseh and Heeger [19] extended the notion to preferences with
ties and showed further hardness results. The term “stable with free pairs” [14, 19, 28] is
equivalent to the adjective “socially stable” [5, 40] for a matching.

In all papers so far, pairs were set to be free at start and the goal was to find an optimal
matching with subject to these free pairs. The ability of a pair to block was derived from the
instance itself. We emphasise that our approach differs here: we aim to find a strategy to set
the fewest elements free to guarantee the existence of a stable solution. The ability to block
is therefore not an inherent property of a pair, but can rather be imagined as a switch that
can be activated on demand. Besides this, we step into the 3D setting and study free pairs in
MPAS and free agents in MAS, both preventing all triples including them from blocking.

Table 1 summarises the four different notions of relaxation that we have explored. We
remark that while AAS and TAS require that the relaxation set covers every blocking element,
for MAS and MPAS, the relaxation set must hit every blocking element.

2.3 Correction sets

The relaxations defined in Section 2.2 give rise to the notion of a correction set.

123

Constraints

Definition 5 A correction set for a matching M for AAS and TAS relaxations is a set con-
taining the blocking elements. A correction set for M for MAS and MPAS relaxations is a set
of elements that stabilise M if they are set to be accommodating.

Notice that, for all four relaxations, we can have many correction sets for a matching,
since any superset of a correction set is also a correction set. A minimum correction set for
a matching M is a correction set for M of minimum cardinality. A minimum correction set
for an instance I is a correction set of minimum cardinality across all minimum correction
sets for matchings in I . While the minimum correction set for a given matching for AAS
and TAS relaxations is unique, there might be several minimum correction sets for the same
matching for MAS and MPAS relaxations and also several minimum correction sets for an
instance for all four relaxations when considering all matchings. An instance admits a stable
matching if and only if the size of the minimum correction sets for all relaxation types is 0.

If a matching is blocked by exactly one triple, then the size of its minimum correction set
is 1 (for TAS, MAS, and MPAS relaxations) or 3 (for AAS relaxation). If a matching has b
blocking triples, then the size of its minimum correction set for TAS is b, but the minimum
correction sets for other relaxation types do not always have the same size. For example, for
MAS relaxation, the size can vary from 1 (if the same agent appears in every blocking triple)
to b (if no two blocking triples contain the same agent).

The unsatisfiable instances that we experiment on in later sections happen to have a
matching with only one blocking triple, meaning that their minimum correction set is a
singleton for TAS, MAS, and MPAS relaxations. However, one can design instances with
non-singleton minimum correction sets for these relaxation types, for example by copying
an instance with a singleton correction set and adding the agents from the other instance
to the end of the original preference list. We present such a construction in Fig. 1. In this
example, the original instance I5 does not admit a strongly stable matching, meaning that
every matching for I5 will have at least one weakly blocking triple. Since I10 consists of two
copies of I5 glued together as described above, every matching for I10 will have at least two
disjoint weakly blocking triples, one for each copy of I5, and therefore at least two different
agents (respectively pairs) need to be accommodating in order to recover the stability of a
matching for MAS (respectively MPAS) relaxation.

We can obtain a minimum correction set of any size by adding more copies of the original
unsatisfiable instance. The size of the minimum correction sets for the final instance will be
linear in the number n of agents in each agent set.

2.4 Matching costs

When computing a minimal set of elements for relaxation, not all agents might be given
equal importance. The central authority might allocate a higher compensation to prioritised
blocking pairs or to popular agents. For a given relaxation version, the cost of a matching
is the sum of the costs of the elements in the minimal set of this particular relaxation. For a
given matching M and arbitrary costs on agents and triples, we thus have for strong stability:

CostAAS(M) = ∑

a∈wba(M)

Cost(a)

CostTAS(M) = ∑

t∈wbt(M)

Cost(t)

123

Constraints

Fig. 1 A 3dsm- cyc instance I10 built from a 3dsm- cyc instance I5 that does not have a strongly stable
matching. The preference lists of the original instance I5 are indicated with a light gray background and
correspond to the first half of the preference lists of the first five agents in each agent set of I10. The first half
of the preference lists of the other five agents in each agent set are renamed copies of the preferences of the
agents from I5, so for example if for 1 ≤ i, j, r ≤ 5 the agent ranked at position r in the preference list of ai
is b j , then the agent ranked at position r in the preference list of ai+5 will be b j+5

The definitions for weak stability can be obtained by replacing wbt by sbt and wba by
sba. For CostMAS and CostMPAS, we need a further definition.

Definition 6 For a matching M, set S of agents is agent-convenient if setting all agents
in S to accommodating implies that M is stable. Analogously, set S of pairs of agents is
pair-convenient for M if setting all pairs in S to accommodating implies the stability of M.

123

Constraints

This definition is the same for both types of stability. We can now write the remaining
matching cost definitions for arbitrary agent and pair costs as follows.

CostMAS(M) = min
S is agent-convenient for M

∑

a∈S
Cost(a)

CostMPAS(M) = min
S is pair-convenient for M

∑

p∈S
Cost(p)

Notice that in all four types of relaxation, not specifying element costs is equivalent to
having them all set to 1. We will therefore refer to a relaxation as an arbitrary-cost relaxation
when elements have an explicit cost, and as a unit-cost relaxation when they do not.

3 Methodology

In this section, we explain how we modified the two best performing models for 3dsm- cyc,
called div-ranks and hs [17], to enable them to deal with soft constraints.

3.1 Soft DIV-ranksmodel

The div-ranks model for 3dsm- cyc with only hard constraints consists of 3n variables
X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zn}, where the domain of each
variable v is set as D(v) = {1, . . . , n}. Assigning xi = j (respectively yi = j , or zi = j)
corresponds to matching ai (respectively bi , or ci) to her j th preferred agent. The constraints
used to find a stable matching M , if any exists, are defined in [17] in the following manner.

• (matching) For all 1 ≤ i, j, k ≤ n, the constraint xi = rankai (b j) ∧ y j = rankb j (ck) ⇒
zk = rankck (ai) is added. This is to ensure that each solution corresponds to a feasible,
if not stable, matching. Since domain values correspond to positions in preference lists
and not to agents, it is possible for two variables from the same agent set to be assigned
the same value. This is why all-different constraints are not used for this model.

• (stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, the constraint xi ≤ rankai (b j) ∨
y j ≤ rankb j (ck)∨ zk ≤ rankck (ai) is added. This is to ensure that the triple (ai , b j , ck) is
not strongly blocking. When solving the problem under strong stability, the inequalities
are strict but the following part is added to each disjunction: ∨(xi = rankai (b j) ∧ y j =
rankb j (ck) ∧ zk = rankck (ai)).

• (redundancy)For all 1 ≤ i, j, k ≤ n, the constraint y j = rankb j (ck)∧zk = rankck (ai) ⇒
xk = rankai (b j) is added.

• (redundancy) For all 1 ≤ i, j, k ≤ n, the constraint zk = rankck (ai)∧xi = rankai (b j) ⇒
y j = rankb j (ck) is added.

For the relaxation version of 3dsm- cyc, we add to thediv-ranksmodel an integer variable
crel corresponding to the cost of the relaxation, as well as additional Boolean variables whose
exact number depends on the type of relaxation.

• AAS and MAS: a Boolean variable rel Ai for each of the n agents ai in A, a Boolean
variable rel B j for each of the n agents b j in B, and a Boolean variable relCk for each
of the n agents ck in C , which amounts to 3n additional variables.

• TAS: a Boolean variable reli, j,k for each of the n3 potential blocking triples (ai , b j , ck).
• MPAS: a Boolean variable rel ABi, j for each of the n2 agent pairs ai , b j from A × B,
a Boolean variable rel BC j,k for each of the n2 agent pairs b j , ck from B × C , and

123

Constraints

a Boolean variable relC Ak,i for each of the n2 agent pairs ck, ai from C × A, which
amounts to 3n2 additional variables.

For all four types, a variable set to 1 means that its corresponding element is part of
the correction set. Determining from the composition of the correction set whether a given
triple is allowed to be blocking is expressed in the model by extending the disjunction of the
stability constraint corresponding to this triple. The part added depends on the type of the
relaxation but not on the kind of stability, so for a given type of relaxation the same part will
be added to both weak and strong stability constraints.

• ForAAS,we add∨(rel Ai ∧rel B j ∧relCk) to the constraint that checkswhether the triple
(ai , b j , ck) is blocking. If all three agents are in the correction set, then the constraint is
satisfied, and whether this triple is blocking has no effect on the stability of the instance.

• For TAS, we add ∨reli, j,k to the stability constraint. This immediately satisfies the
constraint when the triple is in the correction set.

• ForMAS,we add∨(rel Ai ∨rel B j ∨relCk). Because of the distinction between blocking
and accommodating agents, for MAS we only need one agent to be in the correction set
for the triple to be disregarded, while for AAS we needed all three agents.

• ForMPAS, we add∨(rel ABi, j ∨rel BC j,k ∨relC Ak,i). The constraint is satisfied when
any two agents in the triple are present as an accommodating pair in the correction set.

Because relaxation has been added to the stability constraints in a disjunctive way, a trivial
solution for the instance can be obtained by assigning 1 to all Boolean variables. Therefore
we add a final constraint for the objective function which sums the costs of the elements in
the correction set. Minimising this value results in a correction set of minimum cardinality
(for unit-cost relaxation), or in a solution of minimum cost (for arbitrary-cost relaxation).
Both cases represent a maximum relaxation for the instance. For the unit-cost relaxation, all
cost factors in the objective function are replaced by 1.

• For AAS and MAS:
crel = ∑n

i=1(rel Ai ×Cost(ai))+∑n
j=1(rel B j ×Cost(b j))+∑n

k=1(relCk ×Cost(ck)).
• For TAS: crel = ∑n

i=1
∑n

j=1
∑n

k=1(reli, j,k × (Cost(ai , b j , ck))).
• For MPAS:

crel = ∑n
i=1

∑n
j=1(rel ABi, j × (Cost(ai , b j))) + ∑n

j=1
∑n

k=1(rel BC j,k × (Cost(b j , ck)))

+∑n
k=1

∑n
i=1(relC Ak,i × (Cost(ck, ai))).

3.2 Soft HSmodel

We extend the hs model from Cseh et al. [17] by relaxing the constraints that enforce the
stability of the matching. Following Cseh et al. [17], in the soft hs model, we assume that
T is the set of all possible triples {(a1, b1, c1), (a1, b1, c2), . . . , (an, bn, cn)}, where without
loss of generality, the triples in T are ordered, that is, ti ∈ T refers to the i th triple of T . We
also borrow their definition of non-blocking triples, that is, given a triple t ∈ T , we denote by
BT(t) all the triples in T that prevent t from becoming a blocking triple given the preferences.
The variables and constraints of the model are as follows:

• Let M be a set variable whose upper bound is T .
• Let S be a set variable whose upper bound is as follows.

– For AAS/MAS: A ∪ B ∪ C
– For TAS: T
– For MPAS: A × B ∪ B × C ∪ C × A

123

Constraints

• Let c be an integer variable corresponding to the cost of the relaxation.
• (matching) Ensure that each agent from each set is matched by having:

– ∀a ∈ A : ∑
ti ∈T :a∈ti (ti ∈ M) = 1;

– ∀b ∈ B : ∑
ti ∈T :b∈ti (ti ∈ M) = 1;

– ∀c ∈ C : ∑
ti ∈T :c∈ti (ti ∈ M) = 1.

• (stability) In the original version, each stable matching is a hitting set of the non-blocking
triples (i.e., ∀t j ∈ T : M ∩ {i : ti ∈ BT(tj)} �= ∅). We relax this definition as follows.

– For AAS: ∀t j ∈ T : ∃〈a, b, c〉 ∈ BT(tj) : 〈a, b, c〉 ∈ M ∨ {a, b, c} ⊆ S
– For TAS: ∀t j ∈ T : ∃ti ∈ BT(tj) : ti ∈ M ∨ ti ∈ S
– For MAS: ∀t j ∈ T : ∃〈a, b, c〉 ∈ BT(tj) : 〈a, b, c〉 ∈ M ∨ {a, b, c} ∩ S �= ∅
– For MPAS: ∀t j ∈ T : ∃〈a, b, c〉 ∈ BT(tj) : 〈a, b, c〉 ∈ M ∨ {〈a, b〉, 〈b, c〉, 〈c, a〉} ∩

S �= ∅
• (cost of relaxation) The cost variable is constrained as follows:

– For AAS/MAS: c = ∑
x∈S Cost(x)

– For TAS: c = ∑
〈a,b,c〉∈S Cost(a, b, c)

– For MPAS: c = ∑
〈x,y〉∈S Cost(x, y)

The type of stability is addressed in the computation of the BT sets—the model as such
is not concerned with this aspect. In hs, matching M is constrained to be a set of triples
representing M as defined in Section 2.1, so the cost of the relaxation follows the definitions
in Section 2.4. In the actual implementation, M is represented in terms of an array of n3

Boolean variables, where each variable refers to the inclusion/exclusion of the corresponding
triple in the mapping. Similarly, S is also represented as an array of Boolean variables. The
size of this array is either 3n, 3n2 or n3, depending on the type of relaxation.

4 Experimental results

All experiments were performed onmachineswith Intel(R)Xeon(R) CPUwith 2.40GHz run-
ning on Ubuntu 18.04. Tests for the div-ranks model were processed by MiniZinc 2.5.5 [46]
before being given to the two constraint solvers Chuffed 0.10.4. [16], which is based on
lazy-clause generation, and Gecode 6.3.0 [30]. The hs model on the other hand has been
directly encoded using Gecode 6.2.0.

4.1 Dataset

4.1.1 Preference lists

The instances used in our experiments belong to three different classes: Random, ML1swap,
and ML2swaps. In the latter two, the preferences are based on master lists. Master list
instances are instances where the preference lists of all agents in the same agent set are iden-
tical. Master lists provide a natural way to represent the fact that in practice agent preferences
are often not independent. Examples of their real-life applications occur in resident matching
programs [7], dormitory room assignments [51], cooperative download applications such as
BitTorrent [2], and 3-sided networking services [22].

123

Constraints

The precise method to create an instance from each class is as follows:

• Random: generated randomly from uniform distribution.
• ML1swap: all agents in the same agent set follow the same randomly chosen master list.
Then in each preference list, the positions of two randomly chosen agents are swapped.

• ML2swaps: each agent set has a randomly chosen master list that all agents in the set
follow. First, two agents are randomly chosen from each agent’s preference list, and their
positions are swapped. Then, two more agents from each list are randomly chosen such
that the new agents were not involved in the first swap, and their positions are swapped.

For each instance class and each odd size n ∈ {5, 7, . . . , 19}, we generated instances
with n agents in each agent set, solved the instances under strong stability, and kept the first
50 that were satisfiable and the first 50 that were unsatisfiable. This gave us a total of 300
instances for each size, 150 with a strongly stable matching and 150 without. We had to
restrict ourselves to strong stability for unsatisfiability, because the smallest known instance
without a weakly stable matching is of size 90 [41], so it would not have been feasible to
obtain a representative sample of reasonably-sized unsatisfiable instances for weak stability.

The three types of instances that we studied have been previously used to test the div-
ranks and hs models, along with a fourth class named ML_oneset [17]. Since ML_oneset
instances always admit a strongly stable matching [17], we did not include this additional
instance class in our experiments.

4.1.2 Cost formulas

For each configuration of themodel, solver, and relaxation type, each instancewas set upwith
two definitions of costs on its elements. The first one is a unit-cost relaxation, corresponding
to a cost of 1 for every agent, pair, and triple in the instance. For the second one, that we
call popularity-cost relaxation, the cost of an agent is a measure of how well she is ranked
in other agents’ preference lists. Formally the cost of an agent b ∈ B is defined as:

Cost(b) =
n∑

i=1

n − rankai (b). (1)

The costs of agents from A andC are defined analogously. The intent is to penalise putting
popular agents in the correction set, by giving a higher cost to better ranked agents. The cost of
a pair (respectively triple) of agents is the sum of the individual costs of the two (respectively
three) agents composing it.

4.2 Scalability

In this section we evaluate the performance of div-ranks and hs by considering how well
they scale with respect to the number of agents in the set. We have decided to classify the
experiments into eight groups depending on: (a) the satisfiability of the instance, (b) the
solver used and (c) whether the soft constraints have unit cost or not.

The focus of this paper is on dealing with unsatisfiable instances. However, since in
practice we cannot always know in advance whether an instance admits a solution, we found
it important to check that the satisfiable cases are solved efficiently too. As the instances are
satisfiable, the cost of the optimal relaxation is 0 for each one of them, regardless of the type
of relaxation. While we could not include the results because of lack of space, all approaches
deal with satisfiable instances without major issue.

123

Constraints

Fig. 2 A comparison of total time spent by all Gecode models on the unsatisfiable unit-cost instances

123

Constraints

In Figs. 2, 3, 4, and 5 we present the results for the unsatisfiable instances. The approaches
evaluated are classified in terms of: (a) the model used (div-ranks vs hs), (b) the solver used
(Gecode vs Chuffed) and (c) the search strategy used (Bottom Up (bu) vs Top Down (td)).

Fig. 3 A comparison of total time spent by all Gecode models on the unsatisfiable popularity-cost instances

123

Constraints

Fig. 4 A comparison of total time spent by all Chuffed models on the unsatisfiable unit-cost instances

123

Constraints

Fig. 5 A comparison of total time spent by all Chuffed models on the unsatisfiable popularity-cost instances

123

Constraints

Bottom Up consists of branching on the cost variable first by selecting the smallest value in
the domain first. Effectively this means that we follow a succession of unsatisfiable checks
and end with a satisfiable check, which is bound to lead to an optimal solution since we have
already proved that there is no solution with a smaller cost. With the Top Down strategy we
do the opposite: we find a solution and keep on restricting the next one to be better until
that is no longer possible. Effectively this means that we follow a succession of satisfiable
checks and end with an unsatisfiable check. The unsatisfiable check ensures that the last
satisfiable check corresponds to an optimal solution [23]. Our first observation is that the
Chuffed approaches clearly outperform the Gecode approaches. As demonstrated by Figs. 4
and 5, all Chuffed approaches solve the vast majority of instances of size 15 in less than 10
seconds, while the Gecode approaches struggle with instances of size 11 in quite a few cases.
The Chuffed approaches also result in much fewer failures—in some cases the gap is of more
than two orders of magnitude.

We consider 9 relaxation types. The first one (none) corresponds to the case where all soft
constraints are considered hard. This category was included to gauge the amount of overhead
added bymodeling each type of relaxation. The other 8 categories correspond to the unit-cost
and popularity-cost versions of the four relaxation options introduced in Section 2.2.

In generalwe observe that our approaches dealmuch betterwithMASandMPAS thanwith
TAS and AAS. In instances where all relaxation types lead to the same optimal relaxation,
we can save a considerable amount of time by computing one of our two relaxation types.
When it comes to the type of cost, this does not seem to deteriorate much the performance
of the Chuffed approaches. In the Gecode approaches we actually observe an improvement
in performance when we consider our popularity-cost instances in most of the cases. The
situation might be different for instances with completely arbitrary costs.

The Bottom Up vs Top Down comparison is another point where we observe differences
between the Chuffed and the Gecode approaches. In the Chuffed approaches, even though
in most of the cases we did not observe major differences, in some cases the Top Down
exploration led us to visibly better results. The situation in Gecode is quite the opposite. The
very same model (div-ranks) presented very different behaviours depending on whether Top
Down or Bottom Up was used. The Bottom Up tests were completed for all the (small) sizes.
However, we had to discard some of the Top Down tests since it was already known that they
were going to time out. It is important to remark, though, that the Bottom Up strategy did
not always lead to improvements. The improvements were mostly observed when dealing
with AAS/TAS instances. Similarly, we observed differences in the performance of hs with
respect to the Bottom Up vs Top Down comparison. The Bottom Up strategy led us to better
results when dealing with the popularity-cost instances in most of the cases.

To see how well our relaxation models scale on larger instances, we chose the best per-
forming approach for each configuration and ran it on unsatisfiable instances with more than
20 agents in each agent set. These instances, 20 in total, were the ones that were determined
unsatisfiable for strong stability in the experiments by Cseh et al. [17]. We chose the DIV-
ranks model with the Chuffed solver, using the Bottom Up strategy for unit-cost relaxation
and Top Down for popularity-cost, because this showed the best performance in our other
tests. The results, displayed in Table 2, confirm that it is more efficient to compute MAS
relaxations, although AAS and MPAS also scale well for some combinations of instance
class and cost function.

123

Constraints

Table 2 Largest solved instance sizes and smallest unsolved instance sizes for each relaxation version when
run with a timeout of one hour, using the DIV-ranks model and the Chuffed solver

Relaxation Random ML1swap ML2swaps
largest smallest largest smallest largest smallest
solved unsolved solved unsolved solved unsolved

none 35 - 110 - 90 -

unit-cost AAS 35 - 90 110 70 90

popularity-cost AAS 32 35 29 90 70 90

unit-cost TAS 23 29 29 90 35 45

popularity-cost TAS 23 29 29� 29� 29 35

unit-cost MAS 35 - 90 110 70 90

popularity-cost MAS 35 - 90 110 70 90

unit-cost MPAS 35 - 90 110 70 90

popularity-cost MPAS 32 35 90 110 70 90

�: There were two ML1swap instances of size 29 in the dataset. A popularity-cost TAS matching was found
before timeout for one but not for the other

5 Important elements

5.1 Formal definition

When defining minimum accommodating sets in Section 2.2.2 we assumed that any element
can be set accommodating. However, it is a reasonable assumption that certain agents or pairs
cannot be compensated to the point of tolerating blocking. We call the set of those elements
important. With the terminology of free agents or pairs, this means that we restrict the set of
elements that can be set free at all.

Formally, an extended version of Definition 3 assumes the existence of a set of important
agents I ⊆ A ∪ B ∪ C .

Definition 7 The accommodating agents of a weak minimally-accommodating stable match-
ing with important agents (MASI) all belong to the complement set of the important agents
(A∪ B ∪C)\ I , and, subject to this, a weak MASI matching minimises the number of accom-
modating agents needed to eliminate all of its strongly blocking triples. Analogously, a strong
MASI matching is a matching that minimises the number of accommodating agents needed to
eliminate all of its weakly blocking triples, respecting the condition that all accommodating
agents belong to the complement set of the important agents.

Definition 4 can be extended analogously. Here our instances have a set of important pairs
I ⊆ (A × B) ∪ (B × C) ∪ (C × A) instead of agents. The goal is to find a matching that can
be stabilised by setting as few pairs, all outside of this set, accommodating as possible.

Definition 8 In a weak minimally-pair-accommodating stable (MPASI) matching with impor-
tant pairs, only pairs in the complement set of the important pairs (A × B) ∪ (B × C) ∪
(C × A) \ I are set to be accommodating. Subject to this, a weak MPASI matching min-
imises the number of accommodating pairs needed to eliminate all of its strongly blocking
triples. Analogously, a strong MPASI matching is a matching that minimises the number of
accommodating pairs needed to eliminate all of its weakly blocking triples, respecting the
condition that all accommodating pairs belong to the complement set of the important pairs.

123

Constraints

Relaxation without important elements is a pure optimisation problem, because a solution
can always be found by setting all relaxation variables to 1, or, in other words, by setting
all triples free and thus stopping them from blocking. Adding important elements restricts
the set of blocking triples that can be ignored, making the question of satisfiability relevant
again.

To implement important elements in our model, we set the relaxation variable corre-
sponding to each one to false. For example, if agent ai is important, then variable rel Ai in
the div-ranks model of MAS is set to 0. If pair (b j , ck) is important, then variable rel BC j,k

in the div-ranks model of MPAS is set to 0.

5.2 Experimental results

We now experimentally study the behavior of the problem in the presence of important
elements. In particular, we seek to answer two questions:

1. How many important elements can we add without increasing the minimum number of
accommodating elements needed to find a solution?

2. What is the impact of important elements on the runtime?

We tested instances for bothMAS andMPAS relaxation types. Since wewere interested in
how important elements change the size of the minimum correction set, we did not assign an
individual cost to each element, meaning that we are solving unit-cost relaxation. To run the
experiments, we chose the approach with the best performance for this kind of instances: the
Chuffed solver on the div-ranks model with BottomUp strategy. We used the same hardware
as in Section 4.

5.2.1 Dataset

We based our dataset on unsatisfiable instances with n agents in each agent set, for each
n ∈ {5, 8, 11, 14, 17, 20}. For each size n, the composition of the dataset is:

• 50 Random instances;
• 50 ML_1swap instances;
• 50 ML_2swaps instances.

All instances were generated with the same method and seed as the instances in Section 4, so
when the sizes coincide, the instances are the same. We also experimented on ten instances
with 23 ≤ n ≤ 29, all picked from Section 4’s dataset of large instances.

For each instance and each relaxation type, we generated the following sets of important
elements.

• 1 empty set, to serve as reference.
• 20 singleton sets. ForMAS, the agent is randomly chosen among all agents in the instance.
For MPAS, the first agent of the pair is the one in the MAS set, and the agent ranked first
by this agent is then picked to complete the pair. For example, if the first of the 20 sets in
the MAS dataset consists of the agent ck , then the first of the 20 sets in the MPAS dataset
will consist of the agent ck and the agent from A ranked first in the preference list of ck .
The reason for not simply picking a random pair for the MPAS set is twofold:

– Because of the cyclic nature of the problem, setting a single pair to be important will
affect one of its two agents far more than the other.

123

Constraints

– The idea behind setting an element important is to protect its preferences, and it
does not make much sense to protect a random preference without protecting the one
ranked first.

• 20 sets containing a number of elements equal to 90% of the total number of elements,
rounded down. Recall that for MAS the total number of elements is 3n, while for MPAS
it is 3n2. The elements in these sets are chosen completely at random, for both MAS and
MPAS.

All sets are guaranteed to be distinct. For n = 5, the number of sets in each category is only
15, because instances of each size only contain 15 agents, so we cannot have more than 15
distinct singleton sets for MAS.

Testing singleton sets and sets containing almost all elements allows us to study both
extremes. To get a more refined view, we generated additional sets for sizes n ≥ 20. More
precisely, for every p = 5, 10, 15, . . . , 80, 85 we also generated 20 sets containing a number
of elements equal to p% of the total number of elements, rounded down. As it was the case
with the 90% sets, all elements are chosen completely at random for both MAS and MPAS
and all sets are guaranteed to be distinct.

We tested our model on each combination of instance, relaxation type and set of important
elements. This amounted to 62 tests for each instance of size n = 5; 82 tests for each instance
of size 5 < n < 20; and 762 tests for each instance of size n ≥ 20, for a total of 180,420
tests.

Fig. 6 Number of cases with a singleton/non-singleton/no correction set when the number of important
elements is either one, or 90% of the total number of elements

123

Constraints

5.2.2 Impact on the correction set

In all the experiments with no important elements we observed that the correction sets were
singleton, i.e., it was enough to set one element accommodating to regain stability. But as
the number of important elements increases, the pool of available elements for the correction
set shrinks, and when all the elements that could be accommodating by themselves become
important, there are no longer singleton correction sets. Sometimes the only impact is that
the minimum correction set is larger with important elements than without. Other times,
even placing all elements that are not important in the correction set is not enough to regain
stability, and the instance becomes unsatisfiable.

We report the different types of correction sets depending on instance size in Fig. 6.We see
that, even with important elements, the correction sets remain singleton in the vast majority
of cases. The number of other cases seems to remain constant, or even slightly decreases, as
the instance size increases.

In Fig. 6 we only reported results for two types of sets of important elements: singletons
and sets that contain almost all elements. Of course, the impact of important elements on
the correction set will increase with their number; a higher number of important elements
means a higher likelihood of either the minimum correction set containing more than one
accommodating element, or of the instance being unsatisfiable. We show the exact threshold
at which these events happen for size 20 instances in Fig. 7. In the figure, all three generation
methods are combined, so for each combination of the relaxation type (MAS or MPAS) and
number p of important elements, we have 3,000 cases (150 instances times 20 sets of p

Fig. 7 Number of cases with a singleton/non-singleton/no correction set for size 20 instances. ies is the
percentage of elements that are important, except for ies = 1 which designates singleton sets

123

Constraints

important elements). As we empirically show with these results, the minimum correction set
will still be a singleton even when most of the agents are important, and we can answer the
first question asked at the beginning of Section 5.2:

1. How many important elements can we add without increasing the minimum number of
accommodating elements needed to find a solution?

• 75% of all elements for MAS relaxation.
• 70% of all elements for MPAS relaxation.

5.2.3 Impact on runtime

We also measure the impact important elements have on the runtime taking as point of
reference the runtime observed when no important elements are present. That is, for a given
instance, the gap reported in Figs. 8 and 9 is defined as t ′−t

t ·100, where t is the runtime when
no important elements are considered and t ′ is the runtime when the important elements are
considered. In Figs. 8 and 9we focus on the second set of instances described in Section 5.2.1.
In particular, we report the results of sizes 20 and 29 since for these sizes we have data for
all generation types (i.e., Random, ML_1swap and ML_2swaps). Remember that for this
second set of experiments we generated, for every p = 5, 10, 15, . . . , 80, 85, 90, twenty
sets containing a number of elements equal to p% of the total number of elements, rounded
down (in addition to the singleton sets generated). In the figures, for each p we report the gap
considering the relaxation type and the generation type. By ies = 1 we mean the instances

Fig. 8 Impact of important elements on the runtime for size 20. The plot shows the gap wrt to the time taken
when no important elements are present

123

Constraints

Fig. 9 Impact of important elements on the runtime for size 29. The plot shows the gap wrt to the time taken
when no important elements are present

associated with singleton important element sets. The other values of ies correspond to the
other values of p.

For both n = 20 and n = 29 the gap is mostly negative. That is, the problem often gets
easier with the presence of important elements. The decrease in runtime is more noticeable
for random instances with a lot of important elements in n = 29 (see Fig. 9) where we
observe a consistent gap of almost 100%. For this size, we also observe a clear separation
between the random instances and the non-random instances.

In a few cases, most noticeably for size 29 ML_1swap instances under MPAS relaxation
with a number of important elements between 45% and 75% of the total number of elements,
we observe a significant positive gap indicating that in those cases the problem gets signif-
icantly harder with the presence of important elements. We recall that in these experiments
we are considering a timeout of one hour, which prevents us from observing more significant
positive gaps associated with high runtimes. The fact that most of these positive gaps can be
found when the number of important elements is neither very large nor very small, hints to
the presence of a peak of difficulty.

Wecanuse our empirical observations to answer the secondquestion asked at the beginning
of Section 5.2:

2. What is the impact of important elements on the runtime?

• Important elements make the problem easier when they are either few or plentiful.
• Important elements can sometimes make the problem harder if their number is within a
certain range, depending on generation method and relaxation type.

123

Constraints

6 Conclusion and future work

We extended 3dsm- cyc constraint models to four relaxation versions of the problem, two
based on already established two-dimensional relaxation notions, and two that we introduced.
For each of these four relaxations, we tested our models on instances of various sizes and
types, for two different cost functions, and using both a bottom-up and a top-down approach.
Our results show that our models are able to efficiently compute a maximum relaxation for
unsatisfiable 3dsm- cyc instances.

We introduced the notion of important elements, elaborated on the relation of this notion
to relevant notions in the state of the art, and studied the behaviour of 3dsm- cyc in the
presence of important elements. We concluded that a large number of important elements
can be added without increasing the minimum number of accommodating elements needed
to find a solution. We also observed that important elements make the problem easier when
they are either few or plentiful, and in some cases make the problem harder when the number
of important elements is within a certain range, depending on the generation method and
relaxation type.

While our relaxation models performed well for the two cost functions that we studied,
it would be interesting to know in what ways their behavior would be affected when given
different formulas for the costs of the elements in the instance. For example, one could set the
cost of a triple as the difference between the highest and lowest costs of its agents, mirroring
the definition of sex-equal [37, 45, 56, 60] optimisation for satisfiable instances.

Another possible avenue of research would be to explore the relations between minimum
correction sets of different relaxation types. If for a particular class of instances themaximum
relaxations are identical for different types, then one could use our findings that the two new
relaxation versions lead to better performance, and search for minimally-accommodating
stable matchings instead of almost stable matchings to get the same result faster.

Acknowledgements ÁgnesCsehwas funded byOTKAgrantK128611 and the JánosBolyai Research Fellow-
ship. This publication has emanated from research conducted with the financial support of Science Foundation
Ireland under Grant numbers 12/RC/2289-P2 and 16/SP/3804, which are co-funded under the European
Regional Development Fund. This project would not have been possible without COST Action CA16228
European Network for Game Theory.

Funding Open Access funding provided by the IReL Consortium.

Declarations

Conflicts of interests/Competing interests The authors have no conflicts of interest / competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Constraints

References

1. Abraham, D. J., Biró, P., &Manlove, D. F. (2006). “Almost stable” matchings in the roommates problem.
In T. Erlebach, & G. Persiano (Eds.), Proceedings of WAOA ’05: the 3rd Workshop on Approximation and
Online Algorithms, Lecture Notes in Computer Science, vol 3879 (pp. 1–14). Springer

2. Abraham, D. J., Levavi, A., Manlove, D. F., & O’Malley, G. (2008). The stable roommates problem with
globally-ranked pairs. Internet Mathematics, 5, 493–515.

3. Andersson, T., & Ehlers, L. (2020). Assigning refugees to landlords in Sweden: Efficient, stable, and
maximum matchings. The Scandinavian Journal of Economics, 122(3), 937–965.

4. Arcaute, E. &Vassilvitskii, S. (2009). Social networks and stable matchings in the jobmarket. InProceed-
ings of WINE ’09: the 5th International Workshop on Internet and Network Economics, Lecture Notes in
Computer Science, vol 5929 (pp. 220–231). Springer

5. Askalidis, G., Immorlica, N., Kwanashie, A., Manlove, D. F., & Pountourakis, E. (2013). Socially stable
matchings in the hospitals/residents problem. InWorkshop on Algorithms and Data Structures (pp. 85–96).
Springer

6. Biró, P. (2017). Applications of matching models under preferences. In U. Endriss (Ed.), Trends in
Computational Social Choice (pp. 345–373). AI Access.

7. Biró, P., Irving, R. W., & Schlotter, I. (2011). Stable matching with couples: An empirical study. Journal
of Experimental Algorithmics (JEA), 16, 1.

8. Biró, P., Manlove, D. F., &McDermid, E. J. (2012). “Almost stable” matchings in the roommates problem
with bounded preference lists. Theoretical Computer Science, 432, 10–20.

9. Biró, P., Manlove, D. F., & Mittal, S. (2010). Size versus stability in the marriage problem. Theoretical
Computer Science, 411, 1828–1841.

10. Biró, P., & McDermid, E. (2010). Three-sided stable matchings with cyclic preferences. Algorithmica,
58(1), 5–18.

11. Bloch, F., Cantala, D., & Gibaja, D. (2020). Matching through institutions. Games Economic Behavior,
121, 204–231. https://doi.org/10.1016/j.geb.2020.01.010

12. Boehmer, N., Bredereck, R., Heeger, K., &Niedermeier, R. (2021). Bribery and control in stablemarriage.
Journal of Artificial Intelligence Research, 71, 993–1048.

13. Boros, E., Gurvich, V., Jaslar, S., & Krasner, D. (2004). Stable matchings in three-sided systems with
cyclic preferences. Discrete Mathematics, 289(1–3), 1–10.

14. Cechlárová, K. & Fleiner, T. (2009). Stable roommates with free edges. Technical Report 2009-01,
Egerváry Research Group on Combinatorial Optimization, Operations Research Department, Eötvös
Loránd University

15. Chen, J.,Hermelin,D., Sorge,M.,&Yedidsion,H. (2018).Howhard is it to satisfy (almost) all roommates?
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik

16. Chu, G. (2011). Improving combinatorial optimization, PhD thesis. Australia: University of Melbourne
17. Cseh, Á., Escamocher, G., Genç, B., & Quesada, L. (2022a). A collection of constraint programming

models for the three-dimensional stable matching problem with cyclic preferences. Constraints, 27(3),
249–283

18. Cseh, Á., Escamocher, G., & Quesada, L. (2022b). Computing Relaxations for the Three-Dimensional
Stable Matching Problem with Cyclic Preferences. In C. Solnon (Ed.), 28th International Conference
on Principles and Practice of Constraint Programming (CP 2022), Leibniz International Proceedings in
Informatics (LIPIcs), vol 235 (pp. 16:1–16:19). Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. https://doi.org/10.4230/LIPIcs.CP.2022.16. https://drops.dagstuhl.de/opus/volltexte/2022/16645

19. Cseh, Á., & Heeger, K. (2020). The stable marriage problem with ties and restricted edges. Discrete
Optimization, 36, 100571.

20. Cseh, Á., Irving, R. W., & Manlove, D. F. (2019). The stable roommates problem with short lists. Theory
of Computing Systems, 63(1), 128–149.

21. Cseh, Á.&Peters, J. (2022). Three-dimensional popularmatchingwith cyclic preferences. InProceedings
of the 21st International Conference on Autonomous Agents and Multiagent Systems (pp. 309–317).
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, AAMAS ’22

22. Cui, L., & Jia, W. (2013). Cyclic stable matching for three-sided networking services. Comput. Networks,
57(1), 351–363.

23. Dorndorf, U., Pesch, E., & Phan-Huy, T. (2001). Solving the open shop scheduling problem. Journal of
Scheduling, 4(3), 157–174.

24. Eriksson, K., & Häggström, O. (2008). Instability of matchings in decentralized markets with various
preference structures. International Journal of Game Theory, 36(3–4), 409–420.

123

https://doi.org/10.1016/j.geb.2020.01.010
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://drops.dagstuhl.de/opus/volltexte/2022/16645

Constraints

25. Eriksson, K., Sjöstrand, J., & Strimling, P. (2006). Three-dimensional stable matching with cyclic pref-
erences. Mathematical Social Sciences, 52(1), 77–87.

26. Feder, T. (1992).Anewfixedpoint approach for stable networks and stablemarriages. Journal of Computer
and System Sciences, 45(2), 233–284.

27. Feder, T. (1994). Network flow and 2-satisfiability. Algorithmica, 11(3), 291–319.
28. Fleiner, T., Irving, R. W., & Manlove, D. F. (2011). An algorithm for a super-stable roommates problem.

Theoretical Computer Science, 412(50), 7059–7065.
29. Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. American Mathe-

matical Monthly, 120(5), 386–391.
30. Gecode Team (2019). Gecode: Generic constraint development environment. Available from http://www.

gecode.org. Accessed May 2022
31. Gent, I. P., Irving, R. W., Manlove, D. F., Prosser, P., & Smith, B. M. (2001). A constraint programming

approach to the stablemarriage problem. InPrinciples and Practice of Constraint Programming - CP 2001,
7th International Conference, CP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings,
vol 2239 (pp. 225–239). Springer

32. Gupta, S., Jain, P., Roy, S., Saurabh, S., & Zehavi, M. (2020). On the (Parameterized) Complexity of
Almost Stable Marriage. In 40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2020), Leibniz International Proceedings in Informatics (LIPIcs),
vol 182 (pp. 24:1–24:17). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum für Informatik

33. Gusfield, D., & Irving, R.W. (1989). The Stable marriage problem - structure and algorithms. MIT Press.
34. Hamada, K., Iwama, K., & Miyazaki, S. (2009). An improved approximation lower bound for finding

almost stable maximum matchings. Information Processing Letters, 109, 1036–1040.
35. Heyneman, S. P., Anderson, K. H., & Nuraliyeva, N. (2008). The cost of corruption in higher education.

Comparative Education Review, 52(1), 1–25.
36. Irving, R. W., Leather, P., & Gusfield, D. (1987). An efficient algorithm for the “optimal” stable marriage.

Journal of the ACM, 34(3), 532–543.
37. Kato, A. (1993). Complexity of the sex-equal stable marriage problem. Japan Journal of Industrial and

Applied Mathematics, 10, 1–19.
38. Khuller, S., Mitchell, S. G., & Vazirani, V. V. (1994). On-line algorithms for weighted bipartite matching

and stable marriages. Theoretical Computer Science, 127, 255–267.
39. Knuth, D. E. (1976). Mariages Stables. Les Presses de L’Université de Montréal. English translation in

Stable Marriage and its Relation to Other Combinatorial Problems, volume 10 of CRM Proceedings and
Lecture Notes American Mathematical Society, 1997

40. Kwanashie, A. (2015). Efficient algorithms for optimal matching problems under preferences, PhD thesis.
University of Glasgow

41. Lam, C.-K., & Plaxton, C. G. (2022). On the existence of three-dimensional stable matchings with cyclic
preferences. Theory of Computing Systems, 66(3), 679–695.

42. Liu, Q., & Peng, Y. (2015). Corruption in college admissions examinations in china. International Journal
of Educational Development, 41, 104–111.

43. Manlove, D. F. (2013). Algorithmics of Matching Under Preferences, vol 2. WorldScientific
44. Manlove, D. F., O’Malley, G., Prosser, P., & Unsworth, C. (2007). A constraint programming approach to

the hospitals / residents problem. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium,
May 23-26, 2007, Proceedings, vol 4510 (pp. 155–170). Springer

45. McDermid, E., & Irving, R. W. (2014). Sex-equal stable matchings: Complexity and exact algorithms.
Algorithmica, 68(3), 545–570.

46. Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007). Minizinc: Towards
a standard CP modelling language. In Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, vol
4741 (pp. 529–543). Springer

47. Ng, C., & Hirschberg, D. S. (1991). Three-dimensional stable matching problems. SIAM Journal on
Discrete Mathematics, 4(2), 245–252.

48. O’Malley, G. (2007). Algorithmic aspects of stable matching problems, PhD thesis. UK: University of
Glasgow

49. Panchal, N. & Sharma, S. (2014). An efficient algorithm for three dimensional cyclic stable matching.
International Journal of Engineering Research and Technology, 3(4), 2539–2544

50. Pashkovich, K., & Poirrier, L. (2020). Three-dimensional stable matching with cyclic preferences. Opti-
mization Letters, 14(8), 2615–2623.

123

http://www.gecode.org
http://www.gecode.org

Constraints

51. Perach, N., Polak, J., & Rothblum, U. G. (2008). A stable matching model with an entrance criterion
applied to the assignment of students to dormitories at the Technion. International Journal of Game
Theory, 36(3–4), 519–535.

52. Raveendran, N., Zha, Y., Zhang, Y., Liu, X., & Han, Z. (2019). Virtual core network resource allocation in
5G systems using three-sidedmatching. In 2019 IEEE International Conference on Communications, ICC
2019, Shanghai, China, May 20-24, 2019 (pp. 1–6). IEEE. https://doi.org/10.1109/ICC.2019.8762095

53. Rezvanian, T. (2019). Integrating Data-Driven Forecasting and Large-Scale Optimization to Improve
Humanitarian Response Planning and Preparedness, PhD thesis. Northeastern University

54. Roth, A. E., & Xing, X. (1997). Turnaround time and bottlenecks in market clearing: Decentralized
matching in the market for clinical psychologists. Journal of Political Economy, 105(2), 284–329.

55. Siala, M. & O’Sullivan, B. (2016). Revisiting two-sided stability constraints. In International Conference
on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (pp.
342–357). Springer

56. Siala, M. & O’Sullivan, B. (2017). Rotation-based formulation for stable matching. In International
Conference on Principles and Practice of Constraint Programming (pp. 262–277). Springer

57. Soldner, M. (2014). Optimization and measurement in humanitarian operations: Addressing practical
needs, PhD thesis. Georgia Institute of Technology

58. Teo, C.-P. & Sethuraman, J. (1997). LP based approach to optimal stable matchings. In M. E. Saks
(Ed.), Proceedings of SODA ’97: the 8th ACM-SIAM Symposium on Discrete Algorithms (pp. 710–719).
ACM-SIAM

59. Teo, C.-P., & Sethuraman, J. (1998). The geometry of fractional stable matchings and its applications.
Mathematics of Operations Research, 23, 874–891.

60. Unsworth, C. & Prosser, P. (2005a). An n-ary constraint for the stable marriage problem. In Proceedings
of the 5th Workshop on Modelling and Solving Problems with Constraints, held at IJCAI ’05: the 19th
International Joint Conference on Artificial Intelligence (pp. 32–38)

61. Unsworth, C. & Prosser, P. (2005b). A specialised binary constraint for the stable marriage problem. In
Abstraction, Reformulation and Approximation, 6th International Symposium, SARA 2005, Airth Castle,
Scotland, UK, July 26-29, 2005, Proceedings, vol 3607 (pp. 218–233). Springer

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/ICC.2019.8762095

	Computing relaxations for the three-dimensional stable matching problem with cyclic preferences
	Abstract
	1 Introduction
	1.1 Literature review
	1.1.1 Relaxing stability
	1.1.2 Costs and preference negotiation in stable matching problems
	1.1.3 3dsm-cyc
	1.1.4 CP models for 3dsm-cyc

	1.2 Our contribution
	1.3 Structure of the paper

	2 Notation and problem definitions
	2.1 Problem definition
	2.2 Relaxing stability
	2.2.1 Almost stable matchings
	2.2.2 Accommodating elements

	2.3 Correction sets
	2.4 Matching costs

	3 Methodology
	3.1 Soft DIV-ranks model
	3.2 Soft HS model

	4 Experimental results
	4.1 Dataset
	4.1.1 Preference lists
	4.1.2 Cost formulas

	4.2 Scalability

	5 Important elements
	5.1 Formal definition
	5.2 Experimental results
	5.2.1 Dataset
	5.2.2 Impact on the correction set
	5.2.3 Impact on runtime

	6 Conclusion and future work
	Acknowledgements
	References

