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ABSTRACT

The Earth’s climate is projected to warm significantly in the 21st century, and this will affect
human societies in many ways. Since sleep is a basic human need and part of everyone's life,
the question of how temperature affects human sleep naturally arises. This paper examines
the effect of daily mean temperature on sleep duration using nationally representative
Hungarian time use surveys between 1976 and 2010. Compared to a mild temperature (5-10
°C), colder temperatures do not influence sleep duration. However, as daily mean
temperatures rise, sleep duration starts to strongly decline. The effect of a hot (>25 °C) day is
—12.4 minutes. The estimated sleep loss is especially large on weekends and public holidays,
for older individuals, and for men. Combining the estimated effects with temperature
projections of twenty-four climate models under four climate change scenarios shows that
the warming climate will substantially decrease sleep duration. The projected impacts are
especially large when taking into account of the effects of heatwave days. This study also
shows that different groups in society are likely to be affected in significantly different ways
by a warming climate.

JEL codes: 112, Q54
Keywords: temperature; climate change; sleep; time use survey; Hungary
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A homeérséklet és alvasmennyiség kapcsolta idémérleg-
felmérések adatai alapjan

HAJDU TAMAS

OSSZEFOGLALO

Az ellrejelzések szerint a Fold éghajlata jelentGsen melegszik a 21. szazadban, és ez
sokféleképpen érinti majd az emberiséget. Mivel az alvas olyan alapvet§ emberi sziikséglet,
ami mindenki életének szerves része, természetesen felmeriil a kérdés, hogy a hGmérséklet
hogyan befolyasolja az alvasmennyiséget. Ez a tanulmany a napi kézéphémeérsékletnek az
alvas idGtartamara gyakorolt hatasat vizsgalja 1976 és 2010 kozotti orszagos reprezentativ
idémérleg-felmérések segitségével. Az enyhe homérséklethez képest (amikor a napi
kozéphSmérséklet 5-10°C) a hidegebb hémérséklet nem befolyasolja az alvas idStartamat. A
napi kozéphdmérséklet emelkedésével azonban az alvas idGtartama erételjesen csokkenni
kezd. Egy forr6 (>25°C) nap hatasa -12,4 perc. Az alvasveszteség kiilonosen nagy a
hétvégeken és linnepnapokon, az idGsebbek és a férfiak esetében. A becsiilt hémérsékleti
hatasok és huszonnégy klimamodell altal négy éghajlatvaltozéasi forgatokonyvre készitett
hémérsékleti eldrejelzések kombinalasa azt mutatja, hogy a meleged6 éghajlat jelentGsen
csOkkenteni fogja az alvas id6tartamat. A hatasok kiilonosen nagyok, ha figyelembe vessziik a
héhullamos napok hatésait. A tanulmény azt is mutatja, hogy a tarsadalom kiilonb6zé
csoportjait valoszintileg jelentGsen eltérden érinti majd a felmelegedé éghajlat.

JEL: I12, Q54
Kulcsszavak: h6mérséklet; klimavaltozas; alvas; id6mérleg-felmérés; Magyarorszag



Temperature exposure and sleep duration: evidence from time use surveys

Tamas Hajdu
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Abstract

The Earth’s climate is projected to warm significantly in the 21st century, and this will affect
human societies in many ways. Since sleep is a basic human need and part of everyone's life,
the question of how temperature affects human sleep naturally arises. This paper examines the
effect of daily mean temperature on sleep duration using nationally representative Hungarian
time use surveys between 1976 and 2010. Compared to a mild temperature (5-10 °C), colder
temperatures do not influence sleep duration. However, as daily mean temperatures rise, sleep
duration starts to strongly decline. The effect of a hot (>25 °C) day is —12.4 minutes. The
estimated sleep loss is especially large on weekends and public holidays, for older individuals,
and for men. Combining the estimated effects with temperature projections of twenty-four
climate models under four climate change scenarios shows that the warming climate will
substantially decrease sleep duration. The projected impacts are especially large when taking
into account of the effects of heatwave days. This study also shows that different groups in
society are likely to be affected in significantly different ways by a warming climate.

JEL codes: 112, Q54
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1. Introduction

Sleep is essential for humans and other animals (Cirelli and Tononi 2008). Insufficient sleep
and sleep disturbances are associated with negative physical, cognitive, emotional, and social
consequences. The short duration of sleep is associated with higher mortality risk, health
complications, and diseases, including hypertension, cardiovascular disease, and stroke
(Cappuccio et al. 2010; Itani et al. 2017; Tobaldini et al. 2019). Sleep plays an essential role in
maintaining a healthy immune system (Besedovsky, Lange, and Haack 2019). Disrupted,
inadequate sleep or reduced sleep quality leads to negative mode, anxiety, greater interpersonal
conflict, and social withdrawal (Ben Simon et al. 2020; Ben Simon and Walker 2018; Tomaso,
Johnson, and Nelson 2021). Sleep deprivation has also a deleterious effect on cognitive
performance (Lim and Dinges 2010; Krause et al. 2017; Lowe, Safati, and Hall 2017).

Given the importance of sleep, there is an extensive literature on the factors that influence sleep.
An important strand of this literature investigates how environmental factors affect human
sleep. Among others, it includes studies on noise (Muzet 2007; Basner and McGuire 2018),
artificial light (Paksarian et al. 2020; Boslett et al. 2021), air pollution (Liu et al. 2020; Cao,
Chen, and Mclntyre 2021), and exposure to green spaces (Shin et al. 2020; Stenfors et al. 2023).

As climate change is considered one of the greatest threats to humanity in the 21st century, the
question naturally arises of how temperature and a warming climate affect human sleep.
Previous studies on the effect of temperature on sleep consist mainly of laboratory experiments.
These studies show that both cold and heat decrease sleep quality and increase wakefulness
(Haskell et al. 1981; Fletcher, van den Heuvel, and Dawson 1999; Tsuzuki, Okamoto-Mizuno,
and Mizuno 2004; Okamoto-Mizuno et al. 2005; Okamoto-Mizuno and Mizuno 2012; Lan et
al. 2017; Rifkin, Long, and Perry 2018). However, large-scale studies in real-world settings that
examine the effects of ambient temperatures and are able to provide quantitative information

on the potential impacts of climate change for policymakers are extremely rare.

Such a unique example is the study that uses U.S. survey data from more than 750,000
respondents over a 10-year-long period (Obradovich et al. 2017). It examines the effect of
ambient temperature on the number of days of insufficient rest or sleep over the past 30 days
(measured by a single retrospective question). It finds that an increase of 1 °C in the 30-day
average of daily minimum temperature deviations from their long-term mean causes nearly 3
days of insufficient rest/sleep per 100 individuals per month. Assuming a worst-case climate
scenario (RCP 8.5), the study predicts that 14 additional days of insufficient rest/sleep per 100
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individuals will be expected in the U.S. by 2099, compared to 2010. Another paper used data
from sleep-tracking wristbands (Minor et al. 2022). This dataset consists of more than 7 million
daily sleep records of 47,628 individuals over a two-year period across 68 countries. The paper
concludes that the higher the daily minimum temperature the shorter the sleep duration. The
relationship is monotone, but the marginal effect of temperature is increasing. The impact of
increasing minimum temperature by 1 °C is much stronger above a temperature baseline of 5-
10 °C. The observed relationship means that the warming climate will cause an average of 6
hours of sleep loss per person by 2099 (compared to 2010) under the RCP 4.5 scenario, whereas
the projected sleep loss is 14 hours under the RCP 8.5 scenario. Mullins and White (2019)
examine the effect of temperature on mental health and identify changes in sleep quantity as a
potential mechanism. Based on data from the US Time Use Survey, they found that warmer

temperatures reduce the number of minutes slept.

The present study examines the effect of ambient temperature on sleep duration. It uses
nationally representative Hungarian time use surveys between 1976 and 2010, fine spatial
resolution meteorological data, and temperature projections of state-of-the-art climate models.
Meteorological data is linked to the almost 122,000 time use diaries to investigate the effect of
daily mean temperature on sleep duration. The empirical approach is based on the recent climate
econometrics literature (Dell, Jones, and Olken 2014; S. Hsiang 2016). A nonlinear relationship
between temperature and sleep duration is allowed by using temperature categories representing
different daily mean temperatures. The baseline model includes controls for precipitation,
humidity, socio-economic background, day-of-week, and public holidays, but an individual
fixed effects model is also estimated. As county-by-year-by-month fixed effects are also
included, the effects of temperature are identified from the random variation in daily
temperatures within a given county and a given month. The analysis shows that as the daily
mean temperature increases, sleep duration decreases. On a day of 20-25 °C, the average sleep
duration is 6.3 minutes shorter than on a mild (5-10 °C) day. The effect of an extremely hot
(>25 °C) day is —12.4 minutes. However, the effects are much stronger for certain groups in
society, especially among older people. It is also shown by this paper that the effect of heatwave

days (hot days preceded by other hot days) is much stronger than “simple” hot days.

Coupling the obtained relationship with the outputs of climate models, the impact of climate

change is projected under four SSP (Shared Socio-Economic Pathway) scenarios. The warming

climate will decrease sleep duration during the 21st century. The median projections for the last

decade of the century range between 3.7 (SSP 1-2.6 scenario) and 14.0 hours (SSP 5-8.5
3



scenario) per person per year, while they range between —4.7 and —22.7 hours when taking into
account the effect of heatwave days and their future increase. Importantly, most of this loss is

concentrated in the summer and early autumn.

This study makes important contributions to the literature. Despite the growing evidence on the
relationship between ambient temperature and sleep from large-scale data collected in real-
world settings, limitations remain in terms of (i) measurement of sleep, (ii) data collection
strategy, and (iii) understanding the potential impact of climate change. First, some research
measures sleep in terms of days of insufficient sleep, which is helpful for providing evidence
about subjective sleep quality but limited in its ability to tell us about the effect of temperature
on an objective measure of sleep duration. Second, of those that do monitor sleep duration,
some of the previous research has relied on data collected from users of sleep-tracking
wristbands, which are prone to selection bias. In a high-quality paper, Minor et al. (2022) use a
sample that was overrepresented by middle-aged males. On the one hand, people of higher
social status may make defensive efforts, which may lead to effects different from those in a
general population. On the other hand, these demographic groups and study participants using
sleep-tracking technology may also be more prone to sleep disruption and sleep-related anxiety.
Again, this makes it more difficult to generalize the results. The heterogeneity of the effects
also needs to be investigated in more detail to get a full picture of the impact of temperature on
sleep, and this can only be done using data covering the whole of society. This is important, for
example, because the world's population is growing rapidly, so understanding the differences
between age groups can provide useful information for public policy. Finally, long-term
databases spanning several decades are needed to examine possible adaptation. This has not
been possible in previous research due to a lack of suitable data but is essential to predict and
assess the potential impacts of climate change. Although not explored in previous studies,
understanding the effects of heatwaves, which will become more frequent in the future, is also
essential. This study addresses these gaps by using a large number of time-use diaries over a
thirty-five-year period, which addresses prior concerns regarding measurement and
generalizability and also provides an opportunity for an in-depth examination of

heterogeneities, changes over time, and the impacts of heatwaves.



2. Data

2.1. Time use surveys

Data on sleep duration are from five waves of the Hungarian Time Use Survey (HTUS)
administered by the Hungarian Central Statistical Office. HTUS is a nationally representative
time use data collection. During a face-to-face interview, one respondent per household
completes a time diary in which they report their activities for the previous day (24 hours).! The
waves used in this paper are from 1976/1977, 1986/1987, 1993, 1999/2000, and 2009/2010. All
waves follow an open diary design and, with the exception of the 1993 wave, covered a one-
year period. In three out of the five waves of the HTUS (1976/1977, 1986/1987, and
1999/2000), each respondent completed four diaries (one per season). Table Al in

Supplementary Materials summarizes some important characteristics of the surveys.

The analysis sample is restricted to adults (aged 18 and over). A few observations with missing
information on the exact date of the diary, education level, or labor force status are excluded.
In addition, as the effect of temperatures is identified from the variation in temperature exposure
within a particular county and calendar month, observations in county-by-year-by-month
“cells” with less than 10 diaries are also excluded. The final sample covers 121,670 diaries of
46,586 individuals (Table A2, Supplementary Materials). Table A3 in Supplementary Materials
provides a step-by-step summary of the sample selection process.

The main dependent variable is the sleep duration (measured in minutes) which includes all
sleep and nap periods of the 24 hours. It has an average of 513 minutes in the sample (Table
A4, Supplementary Materials). Two additional dependent variables are defined: (i) the time of
falling asleep and (ii) the wake-up time. The first one is the start of the first sleep period after
19:00, the second one is the end of the last sleep period before 11:00.

2.2. Historical temperature observations

Information on ambient temperature is drawn from the European Climate Assessment &
Dataset project (Cornes et al. 2018). The E-OBS 27.0e dataset provides information on daily
(mean, minimum, and maximum) temperatures and other weather data for Europe with a
spacing of 0.1° x 0.1° in regular latitude/longitude coordinates starting from 1950. The gridded
data are aggregated to the county (NUTS 3 region) level by averaging the observed temperature

! The selection of the person to be sampled from the household was done differently in each wave of the survey,
usually either by random selection by interviewers or by selecting a person with a predefined characteristic.
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measures.? For the main analysis, the following temperature categories were constructed from
the daily mean temperatures: <-5 °C, —5-0 °C, 0-5 °C, 5-10 °C, 10-15 °C, 15-20 °C, 20-25
°C, >25°C.

2.3. Temperature change in the 21st century

Information on the change in temperatures during the 21st century is from the latest version of
the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)
(Thrasher et al. 2022). This dataset provides daily temperature projections for 2015-2100 and
retrospectively simulated historical data for the period 1950-2014 based on output from Phase
6 of the Climate Model Intercomparison Project (CMIP6). The spatial resolution of the
projections is 0.25° x 0.25°.

Projected temperature changes under four climate change scenarios are considered: SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios (O’Neill et al. 2016). SSP1-2.6 assumes that CO>
emission will be cut severely declining to net zero in the 2070s. This scenario is consistent with
limiting warming to 2°C by the end of the 21st century (relative to 1850-1900). SSP2-4.5 is
often labeled as a “middle-of-the-road” scenario. It assumes that climate protection measures
will be taken, but the CO2 emission will decline only after the middle of the century. SSP3-7.0
is a scenario with increasing CO2 emission during the 21st century, whereas SSP5-8.5 is a
worst-case scenario that assumes very high greenhouse gas emissions and a fossil-fuel-based
development. Projections of twenty-four climate models are used: ACCESS-CM2, ACCESS-
ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CMCC-ESM2, CNRM-CM6-1, CNRM-
ESM2-1, EC-Earth3, EC-Earth3-Veg-LR, FGOALS-g3, GFDL-ESM4, GISS-E2-1-G, IITM-
ESM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MIROC-ES2L, MPI-ESM1-2-
HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM.

To project the impact of climate change, within-model changes in the temperature distribution
are calculated for each decade between 2020 and 2099 using 1990-2014 as a baseline. In the
first step, daily temperature data are calculated by averaging the mean temperature for each day
over grid points within Hungary. Next, the annual distribution of the main temperature
categories (<5 °C, —5-0 °C, 0-5 °C, 5-10 °C, 10-15 °C, 15-20 °C, 20-25 °C, >25 °C) is

determined for each decade and compared to the temperature distribution of the baseline period:

2 According to the NUTS classification system, Budapest (the capital of Hungary) is a county in its own right, so
the country is divided into 20 counties.
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where o stands for the SSP scenario (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), | denotes
the climate model, and g denotes the decade (from the 2020s to the 2090s). T is the annual
number of days when the daily mean temperature falls into temperature category j, whereas T

denotes the baseline annual value from the 1990-2014 period.

3. Methods

3.1. The effect of daily mean temperature
To identify the effect of daily mean temperatures on sleep duration, the following equation is

estimated:

jri k 1
Sicymd = Zj B]Téymd + Zkykpcymd + Zlﬂchymd + 8Xicymd + Pcym + €icymd (2)

S is the sleep duration (in minutes) of individual i in county c, in year y, month m, and day d. T
stands for temperature bins. B/ is the coefficient of interest and shows the effect of daily mean
temperature falling in temperature bin j on the sleep duration. In the main specification, the
effects of seven temperature categories are estimated (<5 °C, —5-0 °C, 0-5 °C, 10-15 °C, 15—
20 °C, 20-25 °C, >25 °C) compared to a 5-10 °C day. This is a flexible estimation strategy.
The only restriction is that the effect of temperature is the same within the 5 °C-wide

temperature bins.

P denotes the daily amount of precipitation (0 mm, 0-3 mm, 3-5 mm, 5-10 mm, >10 mm), while
H stands for relative humidity (<50%, 50-60%, 60-70%, 70-80%, >80%). A series of
characteristics of the respondent and the interview day is also included (X): gender, age
category (<20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-), education (primary, vocational, high
school, tertiary), labor market status (employed, unemployed, on maternity leave, student,
retired, other), household size (1, 2, 3, 4, 5, 6+), day-of-week (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday), and an indicator of public holidays. County-by-year-by-
month fixed effects (p) controls for unobserved location-by-time-specific factors that influence
sleep. It effectively means that each county is allowed its own level, nonlinear trend, and
seasonality in sleep duration. Thus, the effects of temperatures are identified from the variation

in daily temperatures within a county and month.



The regression is estimated using an individual weight that adjusts for the unequal inclusion
probabilities (provided by the HTUS) combined with another weight that transforms every
wave’s N equal. The standard errors are clustered at the county and individual levels (two-way

clustering).

3.2. The effect of climate change

The effects of climate change are calculated by multiplying the B coefficients from Eq. (2) by
the projected within-model temperature changes from Eq. (1) (AT). Uncertainty in the
relationship between temperatures and sleep duration is captured by bootstrapping the [
coefficient estimates (200 times, sampling with replacement) (Burke et al. 2015). As a result,

several projections are calculated as follows:
ASbolg = Zj BLAT(]ﬂg (3)

where b stands for the bootstrap sample (1-200), o stands for the SSP scenario (SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5), | denotes the climate model (24 in total), and g denotes the decade
(from the 2020s to the 2090s). That is, the ASs show the projected change in sleep duration per
person per year due to changes in temperature distribution compared to 1990-2014. The results
are presented separately for SSP scenario-decade pairs, so for each SSP scenario-decade pair,
4,800 possible projections (24 climate models x 200 estimates of the temperature-sleep
relationship) are analyzed, thus capturing both climate uncertainty and regression uncertainty.
In the empirical analysis, the median, the interquartile range, and the middle 95% of these 4,800
projections are calculated for each SSP scenario and decade.

The impacts by calendar month are examined by using projected temperature changes for each

month:
ASbolgm = Zj B]bAT(],lgm (4)

where b stands for the bootstrap sample, o stands for the SSP scenario, | denotes the climate
model, g denotes the decade, and m denotes the calendar month.

4. Results

4.1. Main results and robustness
Figure 1 shows the effects of daily mean temperature on sleep duration. Compared to the

reference temperature (5-10 °C), colder temperatures do not influence sleep duration. However,
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hot temperatures have detrimental effects, especially beyond 15-20 °C. The effect of a 20-25
°C is —6.3 minutes, whereas the effect of a >25 °C day is —12.4 minutes. Compared to the
average sleep duration of 513.2 minutes (Table A4, Supplementary Materials), these values
represent a decrease of 1.2% and 2.4%. The pattern of the temperature coefficients suggests
that the marginal effect of temperature is increasing. Compared to the 10-20 °C range where a
1 °C increase in temperature decreases sleep duration by approximately 0.25 minutes, the

marginal effect increases fourfold beyond 20 °C.

Minutes

<-5 -5-0 0-5 5-10 10-15 1520  20-25 >25
Daily mean temperature (°C)

Figure 1. The effect of daily mean temperature on sleep duration

The circles are the B coefficients estimated using Eq. (2). The reference temperature is 5-10 °C. The
shaded area represents 95% confidence intervals computed using standard errors clustered at the
county and individual levels. The model has controls for precipitation, humidity, the characteristics
of the respondent and the interview day (gender, age, education, labor market status, household size,
day-of-week, public holiday), and county-by-year-by-month fixed effects. N = 121,670.

Similar patterns are obtained when estimating a restricted cubic spline regression or using
narrower (2 °C-wide) temperature categories (Figure 2). Below the reference temperature, no
sizeable effects are observed, but at higher temperature levels sleep duration is reduced,
Importantly, in both cases, the marginal effect appears to be higher at extremely hot

temperatures than just above the reference point. The conclusions remain the same if daily



maximum or minimum temperature is used in place of daily mean temperature (Figure Al,

Supplementary Materials).
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Daily mean temperature (°C) Daily mean temperature (°C) - midpoints

Figure 2. Estimations applying a cubic polynomial spline function and using narrower
temperature bins

(A) The estimates come from restricted cubic spline functions with six knots. The reference temperatures are
7.5 °C. (B) 2 °C-wide temperature bins, the lowest category is <6 °C, and the highest category is >26 °C. The
reference temperature is 6-8 °C. The models have controls for precipitation, humidity, the characteristics of
the respondent and the interview day (gender, age, education, labor market status, household size, day-of-week,
public holiday), and county-by-year-by-month fixed effects. The shaded areas represent 95% confidence
intervals computed using standard errors clustered at the county and individual levels. N = 121,670.

The sensitivity of the results is explored by a series of robustness tests, including the use of
different fixed effects, exclusion of control variables, alternative methods for clustering the
standard errors, and excluding extremely short (<4 hours) and long (>12 hours) sleep duration

(Table A5, Supplementary Materials). None of these changes alter the conclusions.

There may be a concern that ambient temperatures could influence participation in the time use
survey. On cold or hot days different respondents might be available which could bias the
estimated effects. This possibility is investigated by using the observable characteristics of the
respondents as the outcome variable of interest. The results demonstrate that respondents’
characteristics do not change considerably with temperatures (Table A6, Supplementary
Materials). Only a few coefficients are statistically significant at the 5 percent level (four out of
sixty-three), and no clear temperature patterns are observed. In addition, as shown above,
removing individual controls does not affect the conclusions (Table A5, Supplementary
Materials). These results suggest that the estimated relationship between sleep and ambient

temperature is unlikely to be driven by an endogenous selection of respondents.
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Next, a falsification test is performed to rule out that unmeasured seasonal factors drive the
results. Specifically, the temperature variables are replaced with temperature measured exactly
one year after the completion of the time use diary. Current sleep duration should not be affected
by the temperature of the distant future, therefore, zero coefficients are expected in this
estimation. Indeed, the estimated temperature coefficients are practically zero and all of them

are statistically insignificant at the 5 percent level (Figure 3).

204
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Daily mean temperature (°C)

Figure 3. Falsification test with future temperatures

Estimates based on temperature values measured one year after the completion of the time use diary.
The circles are the temperature coefficients (B). The reference temperature is 5-10 °C. The shaded
area represents 95% confidence intervals computed using standard errors clustered at the county and
individual levels. The model has controls for future precipitation, future humidity, the characteristics
of the respondent and the interview day (gender, age, education, labor market status, household size,
day-of-week, public holiday), and county-by-year-by-month fixed effects. N = 121,670.

In three out of the five waves of the HTUS, each person completed four diaries (one per season),
which allows for the inclusion of individual fixed effects. In this way, not only the observed
characteristics of the individuals can be controlled for, but all person-specific factors that do
not change during the survey year. These fixed effects control for all unobserved individual
characteristics except, for example, sudden changes in health status. Although a sizeable portion
of the sample is excluded from this estimation, including individual fixed effects does not

change the main patterns of the temperature-sleep duration relationship (Figure 4).
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Figure 4. Temperature coefficients from a model with individual fixed effects

The circles are the temperature coefficients (B). The reference temperature is 5-10 °C. The shaded
area represents 95% confidence intervals computed using standard errors clustered at the county and
individual levels. The model has controls for precipitation, humidity, the characteristics of the
respondent and the interview day (gender, age, education, labor market status, household size, day-
of-week, public holiday), county-by-year-by-month fixed effects, and individual fixed effects. The
wave of 1993 and 2009/2010 are excluded, as only one diary was completed by each respondent. N
=101,623.

As alternative outcome variables, four binary indicators are used showing whether the total
sleep time is less than 6 hours, between 6 and 8 hours, between 8 and 9 hours, or at least 9 hours
(Figure A2, Supplementary Materials). The results of these estimations suggest that heat
increases not only the chance of short sleep duration but also the chance of a healthy length of
sleep. At the same time, the chance of long sleep duration (at least 9 hours) is significantly

reduced by high temperatures. Cold temperatures do not affect these outcomes.

Finally, the impact of heatwaves is examined. A heatwave is defined in two ways. The first
definition is a period of at least three consecutive days where the daily mean temperature
exceeds 25°C. Accordingly, heatwave days are those >25 °C days that are preceded by at least
two other >25 °C days. The second definition is that a heatwave day is a day above 25 °C
preceded by at least four other days above 25 °C. Table A7 in Supplementary Materials
summarizes these estimations. Most coefficients are virtually identical to baseline results shown
in Figure 1, but >25 °C days are disentangled into two groups: heatwave days and non-heatwave

days. Extremely hot (>25 °C) days that are not preceded by two >25 °C days decrease daily
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sleep by 11.4 minutes, while the effect of a heatwave day (preceded by at least two others) is
—14.1. Although this difference seems to be non-negligible, it is not statistically significant at
any conventional level (p = 0.57). However, when heatwave days are defined as hot days
preceded by at least four other hot days, the effect of heatwave days is statistically stronger than

the effect of non-heatwave days with >25 °C (—22.7 minutes vs. —10.7 minutes, p = 0.04).

As these results suggest that the effects of temperature bins below the reference category are
practically identical, in the next sections, more parsimonious models are estimated where the

lowest three temperature bins are merged.

4.2. Temporal displacement, heterogeneity, and further results

The results of the previous section show that people suffer sleep loss on hot days, but the heat
might affect sleep duration on the subsequent days too. Some may sleep more on the following
days to make up for lost sleep. But it is also possible that extreme heat might have a delayed
negative impact on sleep duration. To check these possibilities, lagged temperatures are
included from the previous two days. The results suggest that previous days’ temperatures do
not influence sleep duration (Figure A3, Supplementary Materials). While the effects of
contemporaneous temperatures (lag 0) replicate the baseline findings, the coefficients of the
lagged temperatures are statistically insignificant and much smaller without any meaningful
pattern. It is especially apparent for the two highest temperature categories. A similar
conclusion is obtained when including lagged temperatures up to six days (Figure A4,
Supplementary Materials). The sum of the six lags is not statistically different from for any
temperature category, whereas the sum of the contemporaneous and lagged temperatures

replicates the baseline pattern (Figure A5, Supplementary Materials).

Next, the heterogeneity in the effects of temperatures is explored. Specifically, a series of
equations are estimated that are based on Eq. (2) but in which the interactions between the
temperature variables and the categorical variable representing (i) workdays and holidays, (ii)
education groups, (iii) age groups, or (iv) females and males are included. Important insights
emerge from these results (Figure 5). First, the estimated effects of extreme heat (>25 °C days)
are much stronger on weekends and public holidays (—31.0 minutes) than on workdays (—4.2
minutes). As sleep duration is constrained by rigid schedules on workdays due to work, school,
or other compulsory duties, there is less room for an external factor to disturb sleep. In contrast,
bedtime and wake-up time are less constrained on holidays, so the role of an external

disturbance can be more pronounced. Second, individuals with low education seem to be
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slightly more affected by exposure to hot temperatures than individuals with high education,
although the differences do not reach the level of statistical significance. Third, older people
seem to suffer larger sleep loss due to exposure to extreme heat than young and middle-aged
individuals. The effect of a >25 °C day is —28.4 minutes among 61 years old or older, —9.1
minutes among 41-60 years old, and —5.1 minutes among 18-40 years old. Although this data
does not allow to specify the reasons behind the age-related differences, previous research
showed that aging is associated with more fragile sleep (Mander, Winer, and Walker 2017).

Finally, the negative effects of hot temperatures are stronger among males than among females.
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Figure 5. Heterogeneous effects of temperature on sleep duration

The circles are the temperature coefficients (). The reference temperature is 5-10 °C. The shaded area
represents 95% confidence intervals computed using standard errors clustered at the county and individual
levels. (B) Low education = primary school, high education = secondary school or college education. (C)
Young = 18-40 years old, middle-aged = 41-60 years old, older = 61+ years old. The models have controls for
precipitation, humidity, the characteristics of the respondent and the interview day (gender, age, education,
labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed effects.
The formal tests of the differences between the coefficients are shown in Supplementary Materials: Table A8
(panel A), Table A9 (panel B), Table A10 (panel C), and Table A1l (panel D). N = 121,670.
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Heterogeneity over time, or in other words, adaptation is also explored (Figure AG,
Supplementary Materials). The results of this exercise suggest that the effect of heat has not
changed during the thirty-five years of this analysis. The effect of a >25 °C day is —11.8 minutes
during the first three waves (1976/1977, 1986/1987, 1993) and —12.3 minutes in the two more
recent waves (1999/2000, 2009/2010).

Figure 6 examines how temperatures influence the time of waking up and going to bed. Wake-
up is defined as the end of the last sleep period before 11:00, whereas the time of going to bed
is the start of the first sleep period after 19:00. Looking at the graph, one can see that the time
of waking up is much more influenced by hot temperatures than the time of going to bed.
However, it must be noted that the time of going to bed is likely to be different from the time
of falling asleep. Respondents of the time use surveys are likely to report the time of going into
bed rather than the actual time of falling asleep (even if the corresponding time spell is labeled
as a sleep event). Even if heat delays the time it takes to fall asleep, this cannot be observed in
time use surveys, only the effect on bedtime. Consequently, Figure 6 provides solid and credible
evidence for the effect of temperature on the time of waking up. The time of going to bed seems

to be not influenced by temperature.
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Figure 6. The effects of temperature on the time of waking up and going to bed

The circles are the temperature coefficients (). The reference temperature is 5-10 °C. The shaded areas
represent 95% confidence intervals computed using standard errors clustered at the county and individual
levels. Dependent variable: (A) time of waking up, (B) time of going to bed. The model has controls for
precipitation, humidity, the characteristics of the respondent and the interview day (gender, age, education,
labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed effects.
The wave of 1976/77 is not included, as the total daily sleep duration is available in the dataset without specifics
on the sleep spells. N = 96,213 (A) and 95,081 (B).
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Finally, the effects on night and daytime sleep are explored (Figure A7, Supplementary
Materials). Night sleep is defined as sleep time between 20:00 and 7:59, while day sleep is
defined as the sleep time between 8:00 and 19:59. These results show that the effect of
temperature on total sleep time is driven by the effect on night sleep. The temperature
coefficients for daytime sleep are close to zero. Importantly, the estimated effect of a 25 °C day
on daytime sleep is —1.6 minutes, which means that a night's sleep disrupted by heat cannot be
compensated for by a longer daytime nap. On the contrary, if there is an effect, daytime sleep

is also reduced because of the heat.

4.3. The impacts of climate change

Under the assumption that future sleep duration will be influenced by temperatures in a similar
way as sleep duration has been influenced by them in the past (somewhat justified by the
adaptation result), the change in annual sleep duration is projected in response to climate
change-induced warming. The projections are made separately for the four SSP scenarios and
show estimates for each of the remaining decades of the 21st century. The projections are based
on data from twenty-four climate models and the historical relationship between temperature
and sleep (the uncertainty of which is captured by 200 bootstrap samples). The baseline period

to which the future temperature distributions are compared is 1990-2014.

Figure 7 shows the projections for the 2050s and 2090s, while Figure A8 in Supplementary
Materials shows the results for all decades. The median projections suggest considerable sleep
loss already for the middle of the century under each SSP scenario, compared to 1990-2014.
For the 2050s, the total annual sleep loss per person due to warming is 3.7 hours in the SSP1-
2.6 scenario, 4.2 hours in the SSP2-4.5 scenario, 5.3 hours in the SSP3-7.0 scenario, and 6.4
hours in the SSP5-8.5 scenario. By the end of the century, the median projection in SSP1-2.6
does not change considerably: —3.7 hours (the middle 95% of the projections: —0.7—10.0
hours). In the other three scenarios, the median projections are steadily increasing.
Consequently, they are significantly larger by the 2090s: —6.7 hours (middle 95%: —1.7—13.9
hours) in the SSP2-4.5 scenario, —10.4 hours (middle 95%: —3.9—20.1 hours) in the SSP3-7.0
scenario, and —14.0 hours (middle 95%: —4.7—26.0) in the SSP5-8.5 scenario. Although there
are differences between the individual projections, which are captured by the wide range of
projected impacts, almost all of them predict a nonnegligible average annual sleep loss,

especially under the less optimistic scenarios.
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Figure 7. Projected annual sleep loss for the 2050s and 2090s

The changes are calculated using the projected within-model differences in temperature distribution between
1990-2014 and each decade in the 21st century and the estimated effect of temperatures on sleep duration
(estimated by 200 bootstrap samples). The boxplots show the distribution of the projections: the medians, the
interquartile ranges, and the middle 95% of the projections.

Figure A9 in Supplementary Materials shows the projected impacts for the 2090s by calendar
month. Most of the projected annual sleep loss is concentrated in the summer and early autumn.
Under all SSP scenarios, the median projections are practically zero for the winter months,
whereas around 70-80% of the annual sleep losses occur between June and September. The
median projections of the total sleep loss over these four months are —3.2 hours (SSP1-2.6),
—5.5 hours (SSP2-4.5), —8.3 hours (SSP3-7.0), and —10.6 hours (SSP5-8.5) per person. In terms
of daily sleep loss, these projections represent —1.6 minutes (SSP1-2.6) and —5.2 minutes
(SSP5-8.5) per person per day. In relative terms, these correspond to a daily sleep loss of 0.3%
and 1.0%, respectively. But the uncertainty of the projections is quite wide. E.g., the middle
95% of projections for SSP5-8.5 are between —1.7 and —10.2 minutes.

These projections fail to take into account the possible heterogeneous impacts of climate
change, although different groups in society may be affected in significantly different ways by
a warming climate. Figure 8 shows the projected annual sleep loss for the 2090s by age group.
As shown earlier, the elderly suffer greater sleep loss due to exposure to high temperatures than
young and middle-aged adults, and are therefore projected to be more severely affected by
climate change. According to the median projections, the predicted sleep losses for older people
is about 4.5 times greater than for the middle-aged and 9 times greater than for young adults.
For example, in the worst-case scenario (SSP5-8.5), the annual sleep loss for 18-40 and 41-60

year olds is 4.2 hours and 8.1 hours, respectively, compared to 37.6 hours for older people.
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Figure 8. Projected annual sleep loss for the 2090s by age

Young = 18-40 years old, middle-aged = 41-60 years old, older = 61+ years old. The changes are calculated
using the projected within-model differences in temperature distribution between 1990-2014 and 2090-2099
and the estimated effect of temperatures on sleep duration (estimated by 200 bootstrap samples). The boxplots
show the distribution of the projections: the medians, the interquartile ranges, and the middle 95% of the
projections.

During the 21st century, not only the number of hot days but also the number of consecutive
hot days (heatwave days) will increase sharply. It has already been shown that the effect of
these heatwave days on sleep can be stronger than that of a “normal” hot day. It is perhaps
worth pointing out that, taking into account the impact of these days and the future change in
their number, the projected impact of climate change for the 2090s is much stronger than the
baseline projection (considering the median projections). In the SSP5-8.5 scenario, the median
projection is —22.7 hours when heatwave days are taken into account (Figure A10,
Supplementary Materials), compared to the —14.0 hours of the baseline model shown in Figure
7. The median projections for SSP1-2.6, SSP2-4.5, and SSP3-7.0 are 1 hours, 2.3 hours, and

5.1 hours stronger than the baseline approach, respectively.

5. Discussion and conclusion

Based on nationally representative time use survey data of a European country with a
continental climate, this paper provides evidence that ambient temperature has a considerable
effect on sleep duration. The estimated relationship is highly nonlinear. Compared to a mild
temperature (5-10 °C), sleep duration is not affected by the cold. However, as daily mean
temperatures rise, sleep duration starts to decrease. The impact of an extremely hot (>25 °C)
day on daily sleep duration is —12.4 minutes. For the current adult population of Hungary (~8

million), it means that an extremely hot day results in a total of 1.65 million hours of lost sleep,
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compared to a day with a daily mean temperature of 5-10 °C. Even compared to a non-
extremely hot day (20-25 °C), the total sleep loss is 0.8 million hours on >25 °C days. The
effect of hot temperatures is especially large on weekends and public holidays, for older
individuals, and for males. Importantly, there is no evidence for the short-run recovery from the
temperature-induced sleep deficit. Combining the estimated temperature effects with
temperature projections of twenty-four climate models, it is found that the warming climate will
decrease sleep duration during the 21st century. The median projections for the 2090s range
between —3.7 and —14.0 hours per person per year under the four SSP scenarios considered in
the analysis, while taking into account heatwave days they range between —4.7 and —22.7 hours.
This sleep loss is mostly concentrated in the summer months. This study also shows that older
people are projected to be much more affected than average by climate change.

The estimated effects of temperature and climate change are nonnegligible and might lead to
further consequences. Previous studies that leverage exogenous variation in sleep provide
evidence that even a minor disruption in sleeping patterns or a small amount of sleep
deprivation can lead to substantial consequences. Some of these papers analyze the impact of
Daylight Saving Time. At the spring transition, clocks are moved forward by one hour, which
results in a decrease of 40-60 minutes of sleep (Lahti et al. 2006; Barnes and Wagner 2009).
This leads to increases in the number of fatal car accidents, workplace injuries, and the
incidence of myocardial infarction (Barnes and Wagner 2009; Toro, Tigre, and Sampaio 2015;
Smith 2016; Manfredini et al. 2018; Fritz et al. 2020; Osborne-Christenson 2022), and a drop
in general well-being (Kountouris and Remoundou 2014). After the transition in the fall, similar
effects with the opposite sign are observed in some studies (Jin and Ziebarth 2020), although
others fail to establish any relationship (Fritz et al. 2020; Osborne-Christenson 2022). Other
papers examine variation in the timing of natural light across or within time zones that causes
small differences in total sleep time. An analysis of U.S. data finds that a regular loss of 19
minutes of sleep per day has negative effects on weight, diabetes, cardiovascular diseases, and
income (Giuntella and Mazzonna 2019). Another paper shows that both a short-run and a
permanent increase in weekly sleep increase earnings (Gibson and Shrader 2018). Results based
on Indian (Jagnani 2022) and Chinese (Giuntella, Han, and Mazzonna 2017) data show that
later sunset time and the resulting loss of sleep reduces test scores in the short run and years of
education in the long run, decreases cognitive skills and exacerbates depression symptoms.
Geographical position within a time zone and disturbance of circadian rhythm also affect cancer

risks (Gu et al. 2017; VoPham et al. 2018). In sum, these studies show that a slight but regular
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loss of sleep (which is alike to the potential effects of climate change) leads to substantial health
and labor marker effects, but even an occasional shock to sleep duration can cause non-
negligible impacts.

In light of the results of these studies, sleep loss due to exposure to hot days — and especially to
heatwave days —and a warming climate may have non-negligible consequences on a wide range
of outcomes, including health, cognitive performance, and general well-being. These effects
can be particularly significant for older people.

Climate change-induced sleep loss is likely to have sizable macroeconomic consequences. The
economic cost of poor sleep is already high. A study in Australia estimate the annual cost of
inadequate sleep at 45.2 billion US dollars in 2016-2017 (Hillman et al. 2018). Another study
finds that 681.2 billion US dollars are lost each year due to insufficient sleep across five OECD
countries (USA, Canada, Japan, Germany, UK) in the early 2010s (Hafner et al. 2017). In
addition, a recent study estimates that the costs of insufficient sleep duration in Canada in 2020
were 502 million Canadian dollars (Chaput et al. 2022). The expected sleep loss due to climate

change will further increase these economic burdens.

The results of this paper are an important contribution to the vast literature that analyzes the
effects of temperature and climate change on human societies (Dell, Jones, and Olken 2014; T.
A. Carleton and Hsiang 2016), including the effects on productivity (Burke, Hsiang, and Miguel
2015b; Zhang et al. 2018; Miller et al. 2021; LoPalo 2022; Heyes and Saberian 2022), cognitive
performance/learning (Graff Zivin, Hsiang, and Neidell 2018; Cook and Heyes 2020; Garg,
Jagnani, and Taraz 2020; Graff Zivin et al. 2020; Park et al. 2020; Park, Behrer, and Goodman
2021; Park 2022), aggression/crime (S. M. Hsiang, Burke, and Miguel 2013; Ranson 2014;
Burke, Hsiang, and Miguel 2015a), and health (Deschénes and Moretti 2009; Barreca 2012; Ye
et al. 2012; Gasparrini et al. 2015; Mora et al. 2017; White 2017; Karlsson and Ziebarth 2018;
Agarwal et al. 2021; Hajdu and Hajdu 2021; T. Carleton et al. 2022; Conte Keivabu 2022;
Hajdu and Hajdu 2023). Sleep may be one of the channels through which heat and climate
change affect human health, performance, and behavior.

Some important features of this study should be taken into account when assessing the results.
First, time use diaries measure sleep duration with some bias. As mentioned before, sleep
periods in the diaries are more likely to correspond to the time spent in bed rather than actual

sleep. If heat affects (increases) the time it takes to fall asleep, then the effects on sleep duration
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are underestimated. Second, sleep quality might be as important for many health outcomes as
sleep duration. To get complete knowledge about the effect of ambient temperature on sleep,
the characteristics of sleep other than duration cannot be ignored. Third, the time use data allow
a relationship to be established between temperature and sleep duration, but other data are
needed to explore the mechanism. Fourth, the assumptions behind the projection of the impact
of climate change must be made clear. Following the literature (Obradovich et al. 2017; Minor
et al. 2022) and given the results of the present study on adaptation, the projections assume that
the relationship between temperature and sleep duration will be similar in the future as it has
been in the past. The projected impacts can be considered as a benchmark. However, the impact
of climate change can be influenced by a number of factors. Adaptation may occur in the future,
which could mitigate the impact of climate change. Other factors might lead to an amplified
impact of climate change. In the future, not only will the number of days with average
temperatures above 25 °C increase, but also the average temperature of these days. As the
marginal effect of temperature seems to be increasing, the effect of a >25 °C day is likely to be
substantially larger in the next decades. In addition, temperature extremes that are beyond
human experience are likely to occur during the century. The effects of unprecedented

temperature extremes can be especially strong.

The findings of this study imply that policymakers should design strategies to mitigate the
sleep-related threats of heat and climate change, particularly among older people. Raising
awareness of the effect of heat on sleep may lead to individual actions, but planning at the
societal level may also be needed to effectively mitigate the negative effects of future heatwaves

and a warmer climate.
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Figure Al. Estimations using daily maximum and minimum temperatures

The estimates come from restricted cubic spline functions with seven knots. The reference temperatures are 15 °C
(A) and 5 °C (B). The model has controls for precipitation, humidity, the characteristics of the respondent and the
interview day (gender, age, education, labor market status, household size, day-of-week, public holiday), and
county-by-year-by-month fixed effects. The shaded area represents 95% confidence intervals computed using
standard errors clustered at the county and individual levels. N = 121,670.
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Figure A2. Binary outcomes indicating different sleep durations

The circles are the temperature coefficients (). The reference temperature is 5-10 °C. The shaded areas represent
95% confidence intervals computed using standard errors clustered at the county and individual levels. The models
have controls for precipitations, humidity, the characteristics of the respondent and the interview day (gender, age,
education, labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed
effects. N = 121,670.
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Figure A3. Testing near-term displacement

Estimation including two temperature lags. The circles are the temperature coefficients (B). The
reference temperature is 5-10 °C. The shaded areas represent 95% confidence intervals computed
using standard errors clustered at the county and individual levels. Lag O shows the
contemporaneous effects, whereas lag 1 and lag 2 the effects of temperatures of the two previous
days. The model has controls for contemporaneous and lagged precipitations, contemporaneous and
lagged humidity, the characteristics of the respondent and the interview day (gender, age, education,
labor market status, household size, day-of-week, public holiday), and county-by-year-by-month
fixed effects. N = 121,670.
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Figure A4. Including lagged temperatures up to six days

Estimation including six temperature lags. The circles are the temperature coefficients (). The reference
temperature is 5-10 °C. The shaded areas represent 95% confidence intervals computed using standard errors
clustered at the county and individual levels. The model has controls for contemporaneous and lagged
precipitations, contemporaneous and lagged humidity, the characteristics of the respondent and the interview day
(gender, age, education, labor market status, household size, day-of-week, public holiday), and county-by-year-
by-month fixed effects. N = 121,670.
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Figure A5. The cumulative effect of exposure to ambient temperature

Estimation including six temperature lags. (A) Sum of the coefficients on the lagged temperature variables. (B)
Sum of the coefficients on the contemporaneous and lagged temperature variables. The reference temperature is
5-10 °C. The shaded areas represent 95% confidence intervals computed using standard errors clustered at the
county and individual levels. The model has controls for contemporaneous and lagged precipitations,
contemporaneous and lagged humidity, the characteristics of the respondent and the interview day (gender, age,
education, labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed
effects. N = 121,670.
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Figure A6. The effect of temperature on sleep duration over time

The circles are the temperature coefficients (B). The reference temperature is 5-10 °C. The shaded
area represents 95% confidence intervals computed using standard errors clustered at the county and
individual levels. The model has controls for precipitation, humidity, the characteristics of the
respondent and the interview day (gender, age, education, labor market status, household size, day-
of-week, public holiday), and county-by-year-by-month fixed effects. N = 121,670.
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Figure A7. The effects of temperature on night and daytime sleep

The circles are the temperature coefficients (B). The reference temperature is 5-10 °C. The shaded areas
represent 95% confidence intervals computed using standard errors clustered at the county and individual
levels. Dependent variable: (A) sleep time between 20:00 and 7:59, (B) sleep time between 8:00 and 19:59.
The model has controls for precipitation, humidity, the characteristics of the respondent and the interview day
(gender, age, education, labor market status, household size, day-of-week, public holiday), and county-by-year-
by-month fixed effects. The wave of 1976/77 is not included, as the total daily sleep duration is available in
the dataset without specifics on the sleep spells. N = 98,076.
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Figure A8. Projected sleep loss during the 21st century for each decade

The changes are calculated using the projected within-model differences in temperature distribution between
1990-2014 and each decade in the 21st century and the estimated effect of temperatures on sleep duration
(estimated by 200 bootstrap samples). The boxplots show the distribution of the projections: the medians, the
interquartile ranges, and the middle 95% of the projections.
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Figure A9. Projected sleep loss by calendar month for the 2090s

The changes are calculated using the projected within-model differences in temperature distribution between
1990-2014 and 2090-2099 and the estimated effect of temperatures on sleep duration (estimated by 200
bootstrap samples). The boxplots show the distribution of the projections: the medians, the interquartile ranges,
and the middle 95% of the projections.
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Figure A10. Projected sleep loss for the 2090s considering the effects of heatwave days

Heatwave day is a day above 25 °C preceded by at least four other days above 25 °C. The changes are calculated
using the projected within-model differences in temperature distribution between 1990-2014 and 2090-2099
and the estimated effect of temperatures on sleep duration (estimated by 200 bootstrap samples). The boxplots
show the distribution of the projections: the medians, the interquartile ranges, and the middle 95% of the
projections.
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Tables

Table Al. The main characteristics of the time use surveys

1976/1977 1986/1987 1993 1999/2000 2009/2010
Survey time span 1976/11/01- 1986/03/01- 1993/02/01- 1999/09/01- 2009/10/01-
1977/10/31 1987/03/08 1993/05/30 2000/09/06 2010/10/21
Age range 15-69 15-79 18-79 15-84 10-84
Time diaries start 00:00 00:00 00:00 04:00 04:00
N of diaries 24,507 39,617 11,174 43,172 8,391
N of individuals 6,639 10,732 11,174 11,416 8,391
Type of diary Open Open Open Open Open

Table A2. Number of diaries and individuals in the analysis sample

Wave N of diaries N of individuals
1976/1977 23,594 6,405
1986/1987 37,149 10,164
1993 11,108 11,108
1999/2000 42,023 11,113
2009/2010 7, 7967 7,796
Total 121,670 46,586

Table A3. Sample selection by steps
N of diaries
Raw dataset 126,861
Excluding less than 18 years old 122,347
Excluding observation with missing values 121,753
Excluding county-by-year-by-month 121 670

“cells” with less than 10 diaries
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Table A4. Descriptive statistics

Variable Mean SD Min Max N
Sleep durations (minutes) 513.18 104.29 0 1440 121,670
Daily mean temperature (°C)
<5 0.03 0.17 0 1 121,670
-5t00 0.12 0.33 0 1 121,670
Oto5 0.17 0.38 0 1 121,670
5t0 10 0.18 0.38 0 1 121,670
10to 15 0.16 0.36 0 1 121,670
151020 0.20 0.40 0 1 121,670
20to 25 0.12 0.32 0 1 121,670
>25 0.02 0.15 0 1 121,670
Daily precipitation (mm)
0 0.69 0.46 0 1 121,670
0to3 0.15 0.36 0 1 121,670
3to5 0.06 0.24 0 1 121,670
51010 0.06 0.25 0 1 121,670
10+ 0.03 0.17 0 1 121,670
Age
-20 0.05 0.22 0 1 121,670
21-30 0.17 0.38 0 1 121,670
31-40 0.19 0.39 0 1 121,670
41-50 0.19 0.39 0 1 121,670
51-60 0.18 0.38 0 1 121,670
61-70 0.15 0.35 0 1 121,670
71- 0.07 0.25 0 1 121,670
Education
Primary 0.47 0.50 0 1 121,670
Vocational 0.19 0.39 0 1 121,670
High school 0.24 0.43 0 1 121,670
College/university 0.10 0.30 0 1 121,670
Labor force status
Employed 0.55 0.50 0 1 121,670
Unemployed 0.04 0.20 0 1 121,670
Maternity leave 0.03 0.18 0 1 121,670
Student 0.03 0.17 0 1 121,670
Retired 0.29 0.45 0 1 121,670
Other 0.05 0.22 0 1 121,670
N of household members
1 0.10 0.30 0 1 121,670
2 0.26 0.44 0 1 121,670
3 0.23 0.42 0 1 121,670
4 0.24 0.43 0 1 121,670
5 0.09 0.29 0 1 121,670
6+ 0.05 0.22 0 1 121,670
Unknown 0.01 0.11 0 1 121,670
Day-of-week
Monday 0.14 0.35 0 1 121,670
Tuesday 0.14 0.35 0 1 121,670
Wednesday 0.14 0.35 0 1 121,670
Thursday 0.14 0.35 0 1 121,670
Friday 0.14 0.35 0 1 121,670
Saturday 0.14 0.35 0 1 121,670
Sunday 0.14 0.35 0 1 121,670
Public holiday 0.02 0.15 0 1 121,670

Weighted figures.
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Table A5. Sensitivity tests

1) ) E(3)I (4) (%) (6) ()

. xcl. .
Daily mean o Baseline Excl. controls  precipitationand  C-Y, C-M FE C.Y,MFE+ County +Y-M  Sleep duration 4-
temperature (°C) humidity time trend clustering 12 hours
<-5 -2.1(3.4) -3.5(3.5) -2.4(3.4) -3.0 (3.1) -2.5(3.4) -2.1(4.8) —-2.6 (3.3)
-5t00 -1.6 (2.4) -3.8"(2.1) -1.6 (2.4) —-2.6 (2.2) -2.5(2.3) -1.6 (2.8) —-0.5 (2.0)
Oto5 0.0(1.2) -0.5(1.4) 0.3(1.2) —0.5 (1.0) -0.5(1.1) 0.0 (1.7) 0.7 (1.3)
5t0 10 ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat.
10to 15 -1.8(1.7) -2.0(1.8) -2.5(1.6) -2.2 (1.7) -2.3(1.9) -1.8 (1.4) -2.2(1.4)
1510 20 -2.4(1.9) -4.4™ (1.9) -4.3" (1.6) -2.7 (1.9) —2.6 (1.8) —2.4 (1.5) -4.3" (1.7)
20to 25 —-6.3" (3.0) -9.47" (2.8) -8.777 (2.5) —6.4" (2.8) -6.4™ (2.9) -6.37 (2.9) 7.2 (2.6)
>25 -12.4™" (3.2) -10.4™ (3.6) —15.8"" (2.6) —-13.1"" (2.8) —-12.2"" (3.3) —12.4" (2.9) —-14.2"" (3.2)
Fixed effects C-Y-M C-Y-M C-Y-M C-Y,C-M C,Y,M C-Y-M C-Y-M
Time trend No No No No C-spec. quadratic No No
Controls Yes No Yes Yes Yes Yes Yes
Prec!p!tatlon and Yes Yes No Yes Yes Yes Yes
humidity

. County + County + County + County + County + County +
SE clustering individual individual individual individual individual County +Y-M individual
Weighted Yes Yes Yes Yes Yes Yes Yes
R-squared 0.16 0.03 0.16 0.15 0.15 0.16 0.17
N 121,670 121,670 121,670 121,670 121,670 121,670 117,358

Controls: gender, age, education, labor market status, household size, day-of-week, public holiday. Standard errors are in parentheses. * p < 0.10, ™ p < 0.05, ™

p<0.01
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Table A6. Temperature and respondent characteristics

1) (2 3) 4) ) (6) (7 (8) L(9)

. . . arge
Daily mean o Female ngh Young Middle- Older Employed Retired Other household
temperature (°C) education aged size
-5 0.016 0.000 —-0.018 —-0.001 0.019 —-0.000 0.018 -0.017 -0.013
- (0.015) (0.015) (0.011) (0.013) (0.013) (0.019) (0.014) (0.012) (0.012)
5100 0.013 0.008 0.012 —0.005 —0.006 0.006 —0.008 0.002 —-0.002

(0.014) (0.011) (0.009) (0.011) (0.010) (0.015) (0.011) (0.008) (0.008)
0to5 0.001 —-0.002 0.000 0.009 —-0.009 0.013 —0.009 —0.004 0.002
(0.008) (0.010) (0.012) (0.011) (0.007) (0.010) (0.006) (0.008) (0.004)
5t0 10 ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat.
1010 15 0.003 —0.008 0.006 0.007 —-0.013" 0.004 -0.018™" 0.014™ 0.014™
(0.007) (0.005) (0.009) (0.011) (0.007) (0.009) (0.006) (0.006) (0.006)
15 t0 20 0.017* 0.001 0.000 0.005 —0.006 0.008 —-0.014" 0.005 0.010
(0.006) (0.008) (0.012) (0.010) (0.008) (0.011) (0.007) (0.010) (0.008)
20 t0 25 0.009 0.005 0.003 —0.009 0.006 0.003 —0.008 0.005 0.010
(0.007) (0.011) (0.012) (0.012) (0.009) (0.010) (0.008) (0.009) (0.008)
505 0.001 —0.008 -0.014 0.001 0.013 —-0.009 0.003 0.006 0.004
(0.013) (0.014) (0.011) (0.015) (0.012) (0.016) (0.016) (0.012) (0.012)
R-squared 0.01 0.17 0.02 0.02 0.03 0.06 0.04 0.03 0.04
N 121,670 121,670 121,670 121,670 121,670 121,670 121,670 121,670 119,424

The dependent variables are indicated in the titles of the columns. Precipitation, humidity, and county-by-year-by-month fixed effects are included. Standard
errors clustered at the county and individual levels are in parentheses. * p < 0.10, ™ p < 0.05, ™ p < 0.01
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Table A7. The effects of heatwave days

1) )
Daily mean temperature (°C) l]'s:;['r\gﬂéiyzt I]I::;[,\[Ivsa :;Z'ygt
<5 -2.1(3.4) —-2.1(3.4)
-5t00 -1.6 (2.4) -1.6 (2.4)
Oto5 0.0(1.2) 0.0(1.2)
5to0 10 ref. cat. ref. cat.
10to 15 -1.8 (1.7) -1.9(1.7)
1510 20 -2.5(1.9) -2.5(1.9)
20to 25 -6.37 (3.0 6.4 (3.0)
>25 (non-heatwave day) -11.4™" (4.0 -10.77" (3.4)
>25 (heatwave day) -14.1"" (3.7) —22.77" (5.1)
R-squared 0.16 0.16
N 121,670 121,670
p-value (non-heatwave day 057 0.04

vs. heatwave day)
The models have controls for precipitation, humidity, the characteristics of the respondent and the
interview day (gender, age, education, labor market status, household size, day-of-week, public
holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and
individual levels are in parentheses. “ p < 0.10, ™ p < 0.05, ™ p < 0.01

Table A8. The effects of temperatures on workdays and non-workdays

Weekend and p

Workday o plic holidays (1) vs. (2)
Daily mean
temperature (°C) (1) (2) (3)
<5 -0.5(1.4) 1.3(3.1) 0.58
51010 ref. cat. ref. cat.
10to 15 -1.1(1.9) -2.8 (2.4) 0.52
15t0 20 -0.3(1.9) -7.37 (3.0) 0.01
20to 25 -4.6 (3.1) -10.17 (3.4) 0.05
>25 -4.2 (3.4) -31.0™ (7.3) 0.00
R-squared 0.16
N 121,670

The model has controls for precipitation, humidity, the characteristics of the respondent and the
interview day (gender, age, education, labor market status, household size, day-of-week, public
holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and
individual levels are in parentheses. “ p < 0.10, ™ p < 0.05, ™ p < 0.01
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Table A9. The effects of temperatures by education

Low education ~ High education (1) VF; @)
Daily mean
temperature (°C) (1) (2) (3)
<5 3.7 (1.4) -4.0" (2.1) 0.00
5t0 10 ref. cat. ref. cat.
10to 15 -0.7 (1.8) -3.0 (2.6) 0.45
1510 20 -3.3(2.3) -1.8(2.1) 0.52
20to 25 -8.6™ (3.5) -4.2 (3.1) 0.18
>25 -16.3™ (3.2) -9.77 (4.4) 0.20
R-squared 0.16
N 121,670

The model has controls for precipitation, humidity, the characteristics of the respondent and the
interview day (gender, age, education, labor market status, household size, day-of-week, public
holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and
individual levels are in parentheses. “ p < 0.10, ™ p < 0.05, ™ p < 0.01

Table A10. The effects of temperatures by age

; p p p

Young Middle-aged Older Mvs. 2 D)vs.(3) (2)vs. (3)
Daily mean
omperatare (°C) (1) v ©) @ ®) 6)
<5 -2.2 (2.4) -1.1(1.7) 4.3"(2.3) 0.67 0.08 0.09
5t0 10 ref. cat. ref. cat. ref. cat.
10to 15 -1.6 (3.7) -2.6"(1.5) -1.2 (3.5) 0.80 0.94 0.67
1510 20 0.9(2.1) -3.8(2.8) -6.6" (3.2) 0.05 0.04 0.50
20to 25 -3.6 (3.0) -7.0" (3.5) -10.2" (5.8) 0.34 0.27 0.46
>25 -5.1 (4.3) -9.1 (5.5) -28.4™" (4.2) 0.53 0.00 0.01
R-squared 0.16
N 121,670

The model has controls for precipitation, humidity, the characteristics of the respondent and the interview day
(gender, age, education, labor market status, household size, day-of-week, public holiday), and county-by-year-
by-month fixed effects. Standard errors clustered at the county and individual levels are in parentheses. * p < 0.10,
" p<0.05 " p<0.01
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Table All. The effects of temperatures by gender

p

Male Female (1) vs. (2)
Daily mean
temperature (°C) (1) (2) (3)
<5 -1.0 (2.2) 0.1(1.4) 0.66
5t0 10 ref. cat. ref. cat.
10to 15 -2.9 (2.5) -0.9 (2.0) 0.51
1510 20 -3.7(2.2) -1.3(2.1) 0.24
20to 25 -11.8" (3.5) -1.3(2.9) 0.00
>25 -18.6™" (4.5) -6.8" (3.5) 0.03
R-squared 0.16
N 121,670

The model has controls for precipitation, humidity, the characteristics of the respondent and the
interview day (gender, age, education, labor market status, household size, day-of-week, public
holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and
individual levels are in parentheses. “ p < 0.10, ™ p < 0.05, ™ p < 0.01
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