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ABSTRACT 

This paper explores how the network structure of local inter-industry labour flows relates to 

regional economic resilience across 72 local labour markets in Sweden. Drawing on recent 

advancements in network science, we stress-test these networks against the sequential 

elimination of their nodes, finding substantial heterogeneity in network robustness across 

regions. Regression analysis with LASSO selection in the context of the 2008 financial crisis 

indicates that labour flow network robustness is a prominent structural predictor of 

employment change during crisis. These findings elaborate on how variation in the self-

organisation of regional economies as complex systems makes for more or less resilient 

regions. 
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A regionális rugalmasság és az iparágak közötti 

munkaerőáramlás hálózati szerkezete 

ELEKES ZOLTÁN– TÓTH GERGŐ– RIKARD ERIKSSON 

ÖSSZEFOGLALÓ 

Ez a tanulmány azt vizsgálja, hogy a helyi iparágak közötti munkaerő-áramlás hálózati 

szerkezete hogyan kapcsolódik a regionális gazdasági rugalmassághoz 72 svédországi lokális 

munkaerőpiacon. A hálózattudomány legújabb eredményeire támaszkodva stresszteszteljük 

ezeket a hálózatokat a csomópontjaik szekvenciális megszüntetésével. A 2008-as pénzügyi 

válsággal összefüggésben a LASSO-szelekcióval végzett regresszióelemzés azt mutatja, hogy a 

munkaerőáramlási hálózatok robusztussága a válság alatti foglalkoztatási változások egyik 

szignifikáns prediktora. Ezek az eredmények azt mutatják be, hogy a regionális gazdaságok, 

mint önszerveződő komplex rendszerek hogyan eredményezik a rugalmasabb vagy kevésbé 

rugalmas régiós gazdaságok kialakulását. 
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1. Introduction 

 

While all regional economies go through periods of crisis and decline, some prove to be more 

successful than others in coping with such challenging times. This impacts their long-term 

capacity for growth, as a region’s level of success in coping with one crisis conditions its 

ability to deal with subsequent ones (Simmie & Martin, 2010). Consequently, the differential 

growth impact of a crisis ultimately contributes to persistent spatial disparities. For instance, 

the 2008 recession put a stop to roughly a decade of regional economic convergence in the 

EU, driven predominantly by the catching up of member states with less developed 

economies (EC, 2017). Subsequent crises, like the pandemic and rising energy prices, also 

had distinct and somewhat different regional socio-economic effects across seemingly similar 

regions (e.g., Gray et al., 2023; Garcia-Muros et al., 2023). 

 

Knowing more about the capacity of different regions to both resist and recover from 

economic turmoil is therefore high on academic and policy agendas, especially in the 

expanding literature on regional economic resilience (Bristow & Healy, 2020a). Despite 

growing empirical evidence that resilience is highly contingent on the structure of economic 

activities carried out in regions (e.g., Di Caro, 2017; Eriksson & Hane-Weijman, 2017; 

Martin & Sunley, 2020; Fusillo et al., 2022), previous studies seldom transcend the 

specialisation-variety continuum. More network-oriented approaches, however, argue for the 

fact that shared regional capabilities, rather than structure per se, influence resilience (e.g., 

Xiao et al., 2018; Kitsos et al., 2023). This is because regional economies can be regarded as 

(knowledge) networks in which nodes represent specific economic activities, while ties 

represent the degree of shared productive capabilities or the intensity of exchange between 

them (Boschma, 2015). 

 

However, our understanding of exactly how local economic capabilities and 

interdependencies influence regional resilience remains rather limited. To remedy this, there 

is a need to systematically assess the structural heterogeneity of local economic networks and 

evaluate how their structures relate to resilience in terms of regional outcomes (e.g., 

employment, output or income). By now a few papers have engaged with this problem in the 

context of local technology capabilities (Balland et al., 2015; Rocchetta & Mina, 2019; 

Rocchetta et al., 2021; Tóth et al., 2022), finding that the overall density of relatedness is 

positively linked to economic outcomes during crisis. Other networks than those of 
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technologies are underrepresented in the literature, however, despite the fact that crisis-

induced employment effects tend to be more persistent than output effects (Martin, 2012). 

The few notable exceptions that go beyond technologies also find support for the role of 

relatedness density (e.g., Moro et al., 2021; Sánchez‐Moral et al., 2022; Kitsos et al., 2023), 

but mainly concern large urban areas or nationwide definitions of relatedness, both of which 

may cause an urban bias in how capabilities are defined and thus how resilience is 

interpreted. This is not a trivial bias, as non-metro regions are particularly important for better 

understanding regional resilience. For example, medium-sized regions had the highest 

resistance and fastest recovery in Italy in the context of the 2008 financial crisis (Faggian et 

al., 2018), while smaller regions have been consistently struck harder and have struggled 

more to develop new growth paths across multiple crises in Sweden since the 1990s 

(Eriksson & Hane-Weijman, 2017). Consequently, there is a need of comprehensive analyses 

of inter-industry networks in local labour markets across the spatial hierarchy in general and 

of labour redeployment potentials in particular. 

 

Drawing on novel methods developed in network science, the aim of this paper is to provide 

systematic evidence on the link between local industrial network structure and regional 

economic resilience. This is done by first exploring the heterogeneity in the robustness of 

local inter-industry labour flow networks to the hypothetical elimination of some of their 

industries and, second, by assessing the link between this robustness and the economic 

performance of regions during the economic crisis of 2008. Specifically, building on the 

literatures of evolutionary economic geography, regional resilience and network science 

(Section 2), we use a detailed individual-level panel dataset provided by Statistics Sweden to 

construct networks based on above-expected labour flows between industries within 72 

Swedish functional labour market regions, and measure the robustness of these networks to 

the sequential elimination of their nodes (Section 3). We then test how well this proposed 

structural measure, compared with alternatives, predicts employment change in the context of 

the 2008 crisis (Section 4). A discussion of implications, limitations and open questions for 

future research concludes the paper (Section 5). 

 

We thereby contribute to the literature on regional economic resilience by detailing how the 

local self-organisation of labour redeployment flows acts as a determinant of resilience. In 

particular, we demonstrate the variation in the structural robustness of these flows even 

between regions of similar size. Contrasting theory-driven regression models with data-
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driven LASSO inference and selection approaches, we show that labour flow network 

robustness is a prominent predictor of employment resistance during crisis among established 

measures of industrial structure. Furthermore, the paper answers the call in evolutionary 

economic geography for exploring how resilient regions are to the elimination of nodes and 

links from the network representation of their economic structure (e.g., Boschma, 2015). 

Thereby, the paper also connects these bodies of literature more tightly to advancements in 

network science. 

 

2. Literature 

 

It is a central tenet of economic geography that various economic activities tend to be 

unevenly distributed in space. This is often attributed to the spatial concentration of these 

activities (agglomeration) in some places but less so in others, also fostering specialisation 

regardless of whether, for instance, industries, occupations or technology and scientific 

domains are considered. Additionally, the locations of economic activities are not 

independent of each other. Instead, some pairs of activities are more likely than others to be 

found at the same place. Such a spatial division of labour (Massey, 1995) gives rise to distinct 

economic profiles of places, even among regions with the same degree of agglomeration. 

Besides cost advantages, co-agglomeration patterns are rooted in ‘untraded 

interdependencies’ that create and maintain the relative competitiveness of cities and regions 

(Storper, 1997). These agglomeration economies, or the positive non-pecuniary externalities 

stemming from co-location, can be attributed to benefits from specialised local suppliers, 

specialised local labour markets and knowledge spillovers among similar and related 

activities (Glaeser et al., 1992). 

 

2.1. The structure of local inter-industry labour flows  

  

Labour is of particular importance here for at least three reasons. First, empirical evidence on 

the drivers of co-agglomeration among industries indicates that the relative importance of 

labour pooling has increased over the last century, especially for service sectors (Ellison et 

al., 2010; Diodato et al., 2018). Second, workers are key in the accumulation and transfer of 

knowledge. The unstandardised, tacit dimension of knowledge is accumulated through 

region-, industry- and firm-specific work experience, while even the codified component 

requires that workers be able to access, interpret and apply such knowledge. Knowledge is 
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then shared through interaction and mobility. Indeed, firms that are inter-linked by localised 

networks of job mobility outperform similar firms outside these networks (Eriksson & 

Lindgren, 2009; Csáfordi et al., 2020). Additionally, job mobility creates social connections 

through former co-workers even between firms that have experienced no direct labour flows, 

and the local density of these networks boosts productivity growth in local labour markets 

(Lengyel & Eriksson, 2017). Hence, knowledge is not simply ‘in the air’ even in industry 

clusters (Fitjar & Rodríguez-Pose, 2017) but rather requires access through being part of such 

localised labour market networks (Eriksson & Lengyel, 2019).  

 

Third, labour pooling and variety are not merely a matter of composition but also of the 

degree of relatedness between different pairs of industries. Indeed, the job mobility rate as 

such is not conducive to regional growth. Instead, inflows of workers with skills related to the 

existing skill composition of workplaces were found to boost firm performance (Boschma et 

al., 2009). Labour linkages also predict industry-region employment growth and 

diversification (Diodato et al., 2018), as well as the productivity and employment growth of 

regions, as compared to highly diverse flows (Boschma et al., 2014). Hence, labour flows 

represent an underlying structuring aspect of agglomeration. As labour tends to be the least 

mobile production factor even today, knowledge transfer and diversification through this 

channel remains both path- and place-dependent. 

 

Besides learning, networks of labour flows can be considered to represent worker 

redeployment potentials. Inter-industry labour flows tend to cut across broader industrial 

categories as well as small geographical units (Guerrero & Axtell, 2013), and these flows 

form a modular structure in which worker redeployment is more likely within network 

communities than mobility between them (O'Clery & Kinsella, 2022). This property has been 

extensively built upon in analyses of the coherence and diversification of both regions (e.g., 

Boschma et al., 2014; Hane-Weijman et al., 2022) and firms (Neffke & Henning, 2013). 

 

What is missing from the literature above on regional labour flow networks is a systematic 

analysis of the structural heterogeneity across different local labour markets; that is, whether 

some regions have more (or less) robust local labour flow networks than others, thereby 

having more (or less) conducive structural properties of worker redeployment during 

structural disturbances. Building on the network robustness literature, here robustness means 

the rate at which the underlying network of a complex system is fragmented into too many 
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disconnected components (e.g., Barabási, 2016; Zitnik et al., 2019). Considering that regions 

have various levels of agglomeration, distinctive industrial specialisation following a spatial 

division of labour, and different degrees of relatedness between co-agglomerating industries, 

we expect heterogeneity in the network robustness of local inter-industry labour flows. 

 

2.2. Robust inter-industry labour flow networks of resilient regions 

 

Assessing robustness is in and of itself an advancement of our existing knowledge of local 

labour market structures, but is particularly important in understanding regional economic 

resilience. Considerable effort has recently been devoted, in both policy and academia, to 

better understanding regional resilience (Bristow & Healy, 2020a); yet still, it is very much 

an open question why some regions are more successful in navigating economic turmoil than 

other regions of similar size and specialisation (Martin & Sunley, 2020). 

 

While the concept of resilience has a rich interdisciplinary heritage (Pendall et al., 2010), the 

literature on regional economic resilience has been converging on an evolutionary 

interpretation whereby a resilient region shows capacity for both withstanding economic 

shocks and developing new growth paths from time to time (Boschma, 2015; Bristow & 

Healy, 2020b). Accordingly, the conceptual dimensions of resilience include resistance to 

and recovery from economic disruption, as well as structural change (re-orientation) in 

response to such disruptions, which may or may not lead to the renewal of the regional 

growth path (Martin, 2012). How these dimensions translate into desirable levels of output, 

jobs and income in regions is an indication of resilience, while structures, networks and 

institutions are main determinants of it (Boschma, 2015). Key groups of determinants 

explored in the literature include industrial and business structure, labour market conditions, 

financial and governance arrangements, and aspects of agency and decision-making (Martin 

& Sunley, 2020). 

 

Starting by considering the regional industrial composition along a specialisation-variety 

axis, specialisation is assumed to offer opportunities for adaptation by exploiting existing 

local capabilities in relation to a current growth path more effectively, while variety scores 

higher on adaptability by offering more options for opening up new growth paths (Boschma, 

2015). Indeed, a more diverse industrial portfolio mitigates the impact of idiosyncratic 

industrial fluctuations in factor supply and output demand (Doran & Fingleton, 2018), and 
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offers more market options to recombine existing local capabilities during recovery. 

Empirical evidence indicates that a diversified industrial structure characterises the most 

resilient regions, for instance in the US (Fusillo et al., 2022) or Italy (Di Caro, 2017). 

 

Second, previous studies have also indicated that regional resilience is related to some key 

industries or industry segments. Specialising in industries at the forefront of technological 

change tends to improve regional resilience (Brakman et al., 2015), although strategies 

focusing on these industries may be more effective in urban regions. Agricultural and 

traditional manufacturing specialisations exhibit substantial heterogeneity in contributing to 

resistance and recovery (Faggian et al., 2018). Moreover, evidence from Sweden suggests 

that regional employment in sectors associated with the foundational economy were more 

resilient to a grand recession, although local dependence on these sectors hindered overall 

regional employment resistance, highlighting the importance of a mix of foundational 

economy and traded sectors (Martynovich et al., 2023).  

 

Third, Boschma (2015) conjectured that related variety may strike a balance between 

adaptation and adaptability by holding the potential for leveraging existing local capabilities 

in periods of growth, while still allowing for diversification and hence recovery, reorientation 

and renewal during and after crisis. Evidence from European regions in the context of the 

2008 financial crisis supports this idea, as the related variety of industries was beneficial to 

maintaining and increasing dynamism in developing new growth paths both during and after 

crisis (Xiao et al., 2018). However, a set of related industries may also boost shock 

propagation among these industries, exacerbating the impact of even an industry-specific 

shock (Martin & Sunley, 2020), especially in the case of a vertically integrated industry 

portfolio (Cainelli et al., 2019). Indeed, when analysing the evolution of the Swedish and 

German shipbuilding industries, Eriksson et al. (2016) found that as the focal industry 

declined, so did many other activities related to shipbuilding. Recent studies also identify a 

weak negative association between related variety and employment change once the average 

relatedness of technological capabilities (Rocchetta & Mina, 2019; Rocchetta et al., 2021), or 

their network robustness (Tóth et al., 2022), is also considered. On the other hand, potentials 

for redeployment to related industries are particularly important in cases of involuntary 

displacement of workers following major plant closures (Hane-Weijman et al., 2018; 

Nyström, 2018), and as demand shocks unfold (Diodato & Weterings, 2015). Hence, tension 
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remains in the literature regarding how relatedness within the local economy shapes regional 

resilience. 

 

Furthermore, while regional economies can be regarded as webs of specialised production 

units, largely dependent on the technologies, skills and tacit knowledge integrated into the 

process of value creation (Boschma & Martin, 2010), there is a substantial lack of systematic 

evidence on how local economic network structures in general, and inter-industry labour flow 

networks in particular, condition the economic resilience of regions. As Boschma (2015, p. 

714) noted, ‘[...] in the regional resilience literature, it is remarkable how little attention has 

been paid to the sensitivity of regional networks to the removal of specific nodes or the 

dissolution of particular linkages.’ 

 

While this approach suggested by Boschma (2015) has in fact been extensively researched in 

network science in the context of various biological, infrastructural and social networks 

(Barabási, 2016), the connection to regional economic resilience has been forged only in a 

few instances (e.g., Gianelle, 2014; Tóth et al., 2022). In the network science literature, 

robustness is considered to condition the ability of a complex system to carry out its basic 

function even when some nodes or links are missing (Albert et al., 2000; Solé et al., 2008; 

Barabási, 2016). Progressive node or link failures fragment the underlying network of the 

system, which, above a threshold, translates into a severely compromised outcome level 

(Cohen & Havlin, 2009). Given that regions can be conceptualised as complex systems of 

interacting elements that regularly face disturbances – ranging from plant closures, entries 

and structural change to major economic recessions and natural disasters (Martin & Sunley, 

2007) – there are clear bridges between the two strands of literature. Expanding on the 

argument by Shutters et al. (2018), these networks represent solutions to particular 

coordination problems in the production of economic output in regions. In the context of 

local inter-industry labour flows, a node failure can be thought of as an industry-specific 

shock from plant closure(s) affecting regional employment that is highly dependent on one 

(or a few) dominating firms; or more generally, a temporary inability of one or more firms in 

a given industry to change their human capital composition, hence ceasing to be part of the 

labour redeployment flows. Similar cascading failures across a wide range of local industries 

would hinder previous levels of labour redeployment efficiency and scope, translating into 

diminishing employment opportunities at the systemic level of a local labour market. In this 

sense, the robustness of the local inter-industry labour flow networks, capturing their 
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differential capacity to tolerate serial disturbances in their industries, would translate into 

more or less resilient regional economies. 

 

Findings on local networks of technological capabilities indeed indicate that the average 

degree of shared capabilities is conducive to resilience in knowledge production in US metro 

areas (Balland et al., 2015), and employment growth in regions of the UK and EU (Rocchetta 

& Mina, 2019; Rocchetta et al., 2021). Additionally, the network robustness of technology 

networks in EU metro areas was found to have a positive association with employment 

during the 2008 financial crisis (Tóth et al., 2022). Far fewer studies have considered the 

network structure of local labour markets, although the labour market is a main channel 

through which regional change can come about. Some insights from previous empirical 

literature suggest that the density of skill-related occupations in US metro areas had a 

negative association with peak unemployment during the 2008 recession (Moro et al., 2021). 

Sanchez-Moral et al. (2022) also found that Spanish regions with a higher density of skill-

related industries both resisted and adapted to the 2008 recession better than less cohesive 

regions did. Finally, and most related to our approach, Gianelle (2014) analysed the firm-

level labour flow network of the Veneto region in Italy and identified that the robustness of 

the regional system was highly dependent on which node (firm) was eliminated – thus 

suggesting that the regional network structure of labour market interdependencies strongly 

influences the capacity to manage firm closures. 

 

Despite these important contributions, several caveats remain. First, networks of local 

technological capabilities are overrepresented in this particular segment of the literature, 

while patent-based information can be considered more accurate in places with intensive 

patenting activity (predominantly urban areas) and tends to represent particular industries due 

to the heterogeneity in the propensity to patent. Second, and related to the first, many of these 

findings specifically concern large urban areas, typically using nationwide projections of 

relatedness on the regional economies, while smaller regions tend to be neglected despite 

being more vulnerable to economic shocks. Hence, there is a lack of systematic analysis of 

inter-industry labour flow networks in local labour markets across space. This is precisely 

what we take up in this paper. Based on the arguments above, our expectation is that the 

robustness of local labour flow networks can predict their economic resilience in terms of 

resistance during crisis. We test this expectation in the context of Swedish functional labour 

markets during the recession of 2008. The sudden demand shock resulting from the financial 
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crisis hit some firms and regions hard, but in different ways. In urban regions the financial 

sector was put under pressure, while outside the metropolitan regions the crisis especially hit 

in regions where lead firms (e.g., automotives) were heavily reliant on the US market. Thus, 

while national unemployment peaked at around 9% (similar to during the pandemic), the 

regional effects were highly asymmetrical (Hörnström, 2011). 

 

3. Research design 

 

We rely on a detailed dataset provided by Statistics Sweden, pooled from multiple Swedish 

registers. This matched employer-employee dataset covers all workers and workplaces in the 

Swedish economy between 2002 and 2012 on an annual basis. Workers are linked to one of 

264 industries, corresponding to three-digit industry codes in the NACE Rev. 2 classification 

system, and one of 72 functional labour market regions (FA regions) through the 

characteristics of their workplaces. These regions were identified by the Swedish Agency for 

Economic and Regional Growth (2011) by aggregating municipalities based on observed 

commuting flows around an urban core and consistent economic structures. They represent 

local labour markets where people reside and work (ca. 95% of the workforce work and live 

in the same FA), hence mitigating the risk of spatial dependence from labour flows across 

geographically proximate labour markets (e.g., Boschma et al., 2014; Hane-Weijman et al., 

2022). 

 

Building on this dataset, we first construct region-specific labour flow networks to capture 

the local specificities of labour reallocation between industries. We then assess the robustness 

of these networks against the sequential elimination of nodes (i.e., industries), employing a 

novel method adapted from network science. Finally, we validate the relationship between 

labour flow network robustness and regional resilience through regression analysis. 

 

3.1. Network construction 

 

We rely on labour flow networks to capture the economic structure of these local labour 

markets. Such networks are considered to reveal the similarity of industries in terms of the 

worker skills they rely on, as workers are more likely to move between industries where they 

can still benefit from most of their accumulated skills and expertise (e.g., Neffke et al., 2017). 

The common procedure of constructing skill-relatedness networks is to consider normalised 
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labour flows between industry pairs over a period of time, throughout the national economy. 

Local labour market structures can be derived by considering industries in which a particular 

region exhibits relative specialisation, as measured by revealed comparative advantage 

(location quotient greater than 1), and normalised labour flows between industry pairs 

throughout the national economy over a period of time. This way of constructing the network 

is particularly useful when analysing the related diversification of regions (Hidalgo 2021), as 

information on the relatedness of potential new industries to the existing regional portfolio 

cannot be assessed on the basis of industries that are already present. Hence, relatedness is 

inferred based on patterns of other regions across the national economy, and these represent 

conceivable overlaps of worker capabilities between industries. 

 

However, when assessing the robustness of the local industry structure there are arguably two 

problems, one theoretical and one practical. First, relatedness based on national patterns 

assumes that these apply uniformly across space. This may hold on average, and may be the 

case for some industries like basic local services. It may also be misleading in others, such as 

traded sectors, where the functional specialisation of regions plays a more explicit role. 

Indeed, calls have been made to apply more ‘geographical wisdom’ when deriving 

relatedness measures (Boschma, 2017; Fitjar & Timmermans, 2017). Second, from a 

practical perspective, the local subnetworks of a national skill-relatedness network are 

instances of the same underlying network structure and essentially represent different stages 

and sequences of node elimination applied to the same network. This in turn limits the 

variation across local labour market structures that are captured by them. 

 

Motivated by these considerations, we opt to construct normalised labour flow networks 

based only on local labour flows. These networks then more closely represent actual 

location-specific labour reallocation between industries, and locally feasible transition 

options for workers. We identify these networks based on local labour flows across 2002-

2007, prior to the crisis (see SI Figure 2). More specifically, two industries are considered 

connected by labour flows locally, if the observed labour flows between them (𝐹𝑖𝑗) exceed 

what we would expect based on the propensity of these industries to experience labour flows 

((𝐹𝑖.𝐹.𝑗) 𝐹..⁄ ): 

 

𝑆𝑅𝑖𝑗 =
𝐹𝑖𝑗

(𝐹𝑖.𝐹.𝑗) 𝐹..⁄
 (1) 
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where 𝐹𝑖.is the total outflow of workers from three-digit industry 𝑖, 𝐹.𝑗 is the total inflow to 

industry 𝑗, and 𝐹.. is the total flow of workers in the local labour market. To arrive at the final 

measure of relatedness between industries in the local labour market, as is common in 

research using skill-relatedness (e.g., Neffke et al., 2017), we first consider the average of 

𝑆𝑅𝑖𝑗 and 𝑆𝑅𝑗𝑖 to obtain a symmetric measure. Second, the distribution of the raw skill-

relatedness measure is strongly right-skewed, as many industry pairs are weakly related while 

few are strongly connected; thus, we normalise the measure to have its range between -1 and 

+11. Hence, in this framework a normalised skill-relatedness of above 0 corresponds to an 

above-expected labour flow, on which the network representations of local labour markets 

are based. 

 

3.2. Network robustness 

 

We then assess the topological robustness of these networks to the sequential hypothetical 

elimination of their nodes. Specifically, following the approach of Zitnik et al. (2019), we 

measure a scaled version of the Shannon entropy index of the distribution of industries across 

isolated components in local networks. As more industries are removed, the local labour flow 

network fragments into increasingly disconnected components. Depending on the initial 

network structure, some local labour flow networks fragment more quickly than others, and 

our final measure of network robustness captures this variation across regions. Figure 1 offers 

a schematic overview of the measurement approach. 

 

 
1 Following Neffke et al. (2017), the normalised skill-relatedness is 𝑆𝑅̃𝑖𝑗 =

𝑆𝑅𝑖𝑗−1

𝑆𝑅𝑖𝑗+1
. 
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Figure 1. Network components and the robustness of local labour flow networks. 

Note: 𝑆′ indicates the normalised Shannon entropy of the distribution of nodes across 

disconnected components in the network. 

 

Formally, let us consider the local labour flow network 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) of region 𝑖 with 𝑁 

number of industries 𝑉𝑖 and 𝑀 edges 𝐸𝑖. Let 𝑓 denote the rate of the proportion of the 

removed industries, which ranges on 𝑓 ∈ [0,1]. As it is, 𝑓 =  0 captures the initial network 

state when all industries were present in the region and there were no node failures. 

Accordingly, 𝑓 =  1 represents the case when a region’s labour flow network becomes 

completely fragmented. When an industry network 𝐺𝑖 undergoes a failure f, it is fragmented 

into multiple components of different sizes. Let 𝐶𝑖,𝑘
𝑓

 be the number of nodes that belong to 

component k in a fragmented network 𝐺𝑖
𝑓
 with f failures. We then calculate the Shannon 

entropy of node distribution across the isolated components of 𝐺𝑖
𝑓(𝐶𝑘): 

 

𝑆(𝐺𝑖
𝑓

) =  − ∑ 𝑝𝑘 log𝑝𝑘

𝐾

𝑘=1

 (2) 

 

where 𝐾 is the number of isolated components in the network at every given failure rate f. 𝑝𝑘 

is the proportion of nodes belonging to the component 𝐶𝑘. To make the entropy measure 
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comparable across regions with differently sized industry portfolios, we scale the Shannon 

entropy with the log number of industries present in the region: 

 

𝑆 ′(𝐺𝑖
𝑓

) =  𝑆(𝐺𝑖
𝑓

) log 𝑁⁄ . (3) 

 

To determine the network robustness of each local labour market, we vary the failure rate f on 

the whole range of the possible values f ∈ [0,1] with one-per cent steps and then recalculate 

the scaled Shannon entropy using Equations 2 and 3. As a result, we get a robustness curve 

that captures the degree of fragmentation of the local industry network at each possible 

failure rate. The final measure of robustness Ω can be calculated as 1 minus the area under 

this curve: 

 

𝛺(𝐺𝑖) = 1 − ∫ 𝑆 ′(𝐺𝑖
𝑓

)
1

0

 𝑑𝑓 (4) 

 

The measure ranges from 0 to 1, where a higher value refers to a more robust labour flow 

network structure. 

 

In this paper we use two different industry elimination sequences to stress-test local labour 

flow networks. As is common in the network science literature (Barabási, 2016), nodes are 

removed randomly or following the degree sequence of local industries, targeting the most 

connected first. For random elimination, the average of 500 runs produces our robustness 

measure. These two approaches represent extreme cases for measuring the capacity of local 

labour flow networks to withstand shocks, while actual shocks are likely to unfold as a 

combination of the two. While for the remainder of the paper we present our findings for both 

random and targeted elimination, we also consider a combined elimination strategy as a 

robustness check (see discussion of SI Table 3).  

 

Figure 2 presents descriptive information on network robustness based on random and 

targeted elimination. Subfigures (A) and (B) show that the normalised entropy of industries 

over disconnected network components increases with the fraction of nodes removed from 

local labour flow networks. One minus the area under these curves yields the measure of 

network robustness, reflecting that more robust networks are fragmented more slowly. 
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According to subfigures (C) and (D), regions show heterogeneity in the robustness of their 

labour flow networks for both random and targeted elimination, but on a much larger range in 

the latter case. Based on subfigures (E) and (F), while more densely populated labour markets 

have more robust networks on average, especially among smaller regions there is 

considerable variation within the same size range.  

 

 

Figure 2. Descriptive information on the robustness of local labour flow networks. 

Note: Blue represents results on random elimination, red on targeted elimination. 
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3.3. Econometric model 

 

We test the association of our measure of network robustness with employment change, a 

commonly used proxy for regional resilience (e.g., Martin, 2012; Rocchetta & Mina, 2019; 

Rocchetta et al., 2022; Martynovich et al., 2023), in the context of the 2008 recession. 

Initially, we use the following ordinary least-squares (OLS) regression: 

 

Emp𝑖,𝑡+𝑠

Emp𝑖,𝑡
= 𝛼 + 𝐸𝑚𝑝𝑖,𝑡 + 𝛾1𝛺(𝐺𝑖)

𝑅/𝑇 + 𝛽1[𝑍𝑖,𝑡] + 𝑒𝑖,𝑡 (5) 

 

where the dependent variable 
Emp𝑖,𝑡+1

Emp𝑖,𝑡
 refers to the employment change in region 𝑖 from the 

base year of 2007 to upcoming years 𝑡 + 𝑠 ∈ [2008,2012]. We adjust for the baseline level 

of the dependent variable by including 𝐸𝑚𝑝𝑖,𝑡. 𝑍𝑖,𝑡 is a collection of control variables and 𝑒𝑖,𝑡 

is a normally distributed error term. Our main variable of interest is denoted by 𝛺(𝐺𝑖)
𝑅/𝑇 , 

which captures the network robustness 𝛺 of an industry network 𝐺𝑖 to random and targeted 

removal of industries (superscript 𝑅 and 𝑇, respectively). 

 

Additional variables include population density to control for the scaling of economic 

activities, as larger and more densely populated regions tend to have more economic 

activities and more dense network representations (Shutters et al., 2018). Second, the level of 

human capital in regions is included, measured by the share of workers between 25 and 65 

years of age who have a tertiary education, as higher-educated workers tend to have a more 

advantageous labour market status both in and out of crisis (Hane-Weijman et al., 2018), and 

more broadly, the ability of regions to repeatedly reinvent themselves in the face of economic 

adversity has been linked to the presence of a skilled workforce (Glaeser 2005). Third, 

various additional measures of local industrial structure have been established in the literature 

that may be conducive to resilience. Accordingly, we include the absolute diversity and 

relative regional specialisation of the local industry mix (Grillitsch et al., 2021), the economic 

complexity of regions (Hidalgo, 2021), and the related and unrelated variety within them 

(Frenken et al., 2007; Fitjar & Timmermans, 2017) in a set of extended models that aim to 

assess the relative predictive power of these variables on regional resilience (for a formal 

definition of these variables see SI Section 4). The pairwise correlations of these variables are 
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often high (see SI Table 1) and, together with the relatively high VIF values (see Section 4) in 

the initial regression models, indicate a high risk of multicollinearity.  

 

To overcome this potential problem, as well as to identify the key structural predictors of 

regional resilience, we extend the basic OLS models with a set of least absolute shrinkage 

and selection operator (LASSO) based models. LASSO is most useful in conditions such as 

ours, with a relatively small sample size and many covariates with potential collinearity, and 

when the relative importance of variables is unclear (Tibshirani, 1996), as is the case with the 

variables on local industry structure. In summary, a LASSO selection iteratively adds and 

removes variables to and from a model, while maximising 𝑅2 and minimising the mean 

squared error (for a detailed technical description see SI Section 3). As LASSO selection 

needs multiple runs and offers several parametrisation options, those variables were included 

in the final regressions that were selected in at least 85% of the 500 runs of the LASSO 

variable selection (see SI Figure 1). 

 

4. Results 

 

Figure 3 displays the regional distribution of robustness to random (A) and targeted (B) 

elimination. In general, the larger city regions (Stockholm in the east, Malmö in the south and 

Göteborg in the west) have higher robustness, followed by smaller regions in the south and 

regional centres along the northern coast. It is generally the more remote and sparsely 

populated regions in the north (apart from the mining region of Kiruna) and in central 

Sweden that have the lowest robustness. This general robustness pattern resembles the 

regional effects of previous crises in recent decades. The metro regions and large regional 

centres tend to be more resilient to general crises, while more sector-specific shocks (e.g., the 

ICT crisis in the early 2000s) mainly entail an urban crisis (Eriksson & Hane-Weijman, 

2017). Thus, the robustness derived from 2002-2007 data seems to reflect a more long-lasting 

regional capacity to manage crises. The regional difference between random and targeted 

elimination is not stark; instead, the difference in scale should be noted. That is, while the 

most robust regions are as robust to random as to targeted elimination, the least robust 

regions are far more sensitive to targeted elimination, indicating a more specialised and 

coherent industry structure. 
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Figure 3. Mapping the robustness of local inter-industry labour flow networks across Sweden.  

Note: Based on labour flows aggregated across 2002-2007. 

 

Based on these observations and those made in Section 3, there is a substantial heterogeneity 

in the robustness of local labour flow networks across Swedish local labour markets. The 

question, then, is whether this network robustness conditions their resilience to an economic 

shock. To test this, we turn to the regression results on the association between robustness 

and change in employment in the context of the 2008 economic crisis. This context was 

chosen because this is the most recent economic crisis event for which we have sufficient 

data covering its aftermath as well. As such, our results pertain to the resilience of regions 

particularly in the context of a grand recession. 

 

Tables 1 and 2 present the results of our regression analyses, including robustness to random 

and targeted elimination of industries (𝛺𝑅 and 𝛺𝑇), respectively. Model 1 in both tables 

represents a theory-driven employment growth model whereby coefficients are obtained 

using an OLS estimator. Model 2 extends this basic model by adding multiple variables on 

local industrial structure that are also considered in the resilience literature. As discussed in 
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Section 3, there is a high correlation among the covariates, and average VIF values in the 

baseline OLS models exceed the tolerable range (Model 1 of Tables 1 and 2). This potential 

problem of multicollinearity further increases once we include alternative measures that 

capture aspects of local industrial portfolios. To mitigate this problem, the next set of models 

report the results of the LASSO inference that identifies the most stable predictors of the 

outcome variable in the case of a small number of observations, compared with a larger 

number of potentially collinear predictors. Model 3 in Tables 1 and 2 reports the coefficients 

obtained from LASSO inference, while Model 4 indicates the variables that were selected by 

the LASSO inference as the main predictors of employment change. Model 5 reports the 

coefficients obtained from an OLS specification with LASSO-selected variables. As reported 

in the two tables, mean VIF values in these final models are well within the acceptable range. 

 

Control variables in Model 1 in both tables show the expected signs, but significant 

coefficients are found mainly for the model with network robustness based on random 

elimination. The stepwise introduction of variables shows that these signs are consistent 

despite the likely presence of multicollinearity in the case of multivariate analysis (see SI 

Table 2). The results of the LASSO selection indicate that the robustness of local labour flow 

networks is the most consistently present predictor among all the variables considered (SI 

Figure 1). In the OLS models with LASSO-selected variables, we find that the robustness of 

the local labour flow network to both random and targeted removal of industries has a 

significant positive association with employment change. Hence, regions with a higher 

capacity to withstand disturbances to the local capability base of their workforce tend to 

exhibit higher economic resilience in terms of resistance. This is because, due to labour 

pooling across industries, disturbances in a particular industry will likely leave others that are 

still reliant on similar worker capabilities operational. Additionally, workers belonging to 

industries that are more isolated in the local labour flow network have fewer redeployment 

options in the case of job loss in the wake of the crisis. Thus, our results complement 

previous findings indicating that the availability of skill-related alternatives makes the re-

employment of workers after plant closures easier (e.g., Diodato & Weterings, 2015; Morkuté 

et al., 2017; Hane-Weijman et al., 2018), by taking a more aggregate and systemic 

perspective. 
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Table 1. LASSO inference and LASSO-selection-based OLS results for random removal. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (5) 

 OLS (baseline) OLS LASSO inference 

(adaptive) 

LASSO selection OLS with 

LASSO selection 

log10 𝑅𝐸𝐺𝐸𝑀𝑃2007 -0.076* -0.004 -0.022   

 (0.038) (0.063) (0.065)   

𝑃𝑂𝑃𝐷𝐸𝑁𝑆2007 0.001 0.000 0.000   

 (0.000) (0.000) (0.000)   

𝐻𝑈𝑀𝐶𝐴𝑃2007 0.355** 0.100 0.107   

 (0.146) (0.163) (0.150)   

Ω𝑅 1.996** 2.195** 2.299** X 1.725*** 

 (0.903) (0.864) (0.925)  (0.434) 

𝑅𝐸𝐿𝑉𝐴𝑅2007  -0.041 -0.046 X -0.066** 

  (0.041) (0.038)  (0.026) 

𝑈𝑁𝑅𝐸𝐿𝑉𝐴𝑅2007  -0.147 -0.142   

  (0.140) (0.154)   

𝑇𝐻𝐸𝐼𝐿2007  0.002 0.002 X 0.002* 

  (0.001) (0.002)  (0.001) 

𝐷𝐼𝑉2007  0.017 0.015   

  (0.017) (0.020)   

𝑅𝑆𝑅2007  -0.005 -0.002   

  (0.010) (0.010)   

𝐸𝐶𝐼2007  0.081 0.083 X 0.092** 

  (0.070) (0.061)  (0.035) 

Constant 0.369 0.560   0.423*** 

 (0.235) (0.386)   (0.125) 

# Region 72 72 72 72 72 

R2 0.280 0.462   0.446 

Adjusted R2 0.237 0.374   0.413 

Mean VIF 13.84 29.88   3.69 

F-Statistic 6.52*** 5.25***   13.47*** 

Note: Standard errors in parentheses; * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. 

 

Importantly, both interpretations above depend on the structure of labour flow networks 

among local industries. In this way our findings are in line with those of recent contributions 

regarding local network structures and resilience (Moro et al., 2021; Tóth et al., 2022), while 

expanding on these analyses by considering the regional industrial structure in particular, as 

well as by moving beyond the analysis of metropolitan regions. 
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Table 2. LASSO inference and LASSO-selection-based OLS results for targeted removal. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (5) 

 OLS (baseline) OLS LASSO inference 

(adaptive) 

LASSO selection OLS with 

LASSO selection 

log10 𝑅𝐸𝐺𝐸𝑀𝑃2007 -0.027 0.046 0.026   

 (0.026) (0.066) (0.072)   

𝑃𝑂𝑃𝐷𝐸𝑁𝑆2007 0.000 -0.000 -0.000   

 (0.000) (0.000) (0.000)   

𝐻𝑈𝑀𝐶𝐴𝑃2007 0.290* 0.064 0.067   

 (0.154) (0.170) (0.161)   

Ω𝑇 0.334 0.216 0.267 X 0.280*** 

 (0.252) (0.249) (0.283)  (0.097) 

𝑅𝐸𝐿𝑉𝐴𝑅2007  -0.031 -0.036   

  (0.042) (0.042)   

𝑈𝑁𝑅𝐸𝐿𝑉𝐴𝑅2007  -0.111 -0.105   

  (0.146) (0.153)   

𝑇𝐻𝐸𝐼𝐿2007  0.002* 0.002 X 0.003*** 

  (0.001) (0.002)  (0.001) 

𝐷𝐼𝑉2007  0.014 0.011   

  (0.018) (0.019)   

𝑅𝑆𝑅2007  -0.003 -0.000   

  (0.010) (0.020)   

𝐸𝐶𝐼2007  0.071 0.074 X 0.091** 

  (0.073) (0.068)  (0.040) 

Constant 0.917*** 1.075***   0.874*** 

 (0.051) (0.358)   (0.026) 

# Region 72 72 72 72 72 

R2 0.248 0.413   0.377 

Adjusted R2 0.203 0.316   0.350 

Mean VIF 7.65 29.12   1.67 

F-Statistic 5.51*** 4.29***   13.72*** 

Note: Standard errors in parentheses; * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. 

 

We also find that robustness to random elimination of industries has a greater coefficient 

compared with robustness to the removal of the most connected industries. While this is 

admittedly unexpected, one must consider that the relative importance of random and 

targeted robustness depends on the interplay between the local network structure and how an 

economic crisis unfolds over it. While shock propagation likely follows through related links 

early on, it does not necessarily follow the degree distribution of industries, especially when 

the outcome in terms of employment change is aggregated across years. 
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With respect to other variables on the industrial structure of regions, we find first that the 

Theil index (𝑇𝐻𝐸𝐼𝐿2007) is consistently selected as a predictor that captures regions that are 

more specialised than the average in the Swedish context. Second, local labour markets with 

a more complex industrial structure (𝐸𝐶𝐼2007) fared better during the crisis. This is an 

interesting and novel finding, expanding on previous results showing that regions branching 

into more complex occupations also saw faster employment growth after the recession (Hane-

Weijman et al., 2022). Complexity thus seems to be associated with resilience, at least in the 

Swedish case. It is important to note, though, that this finding is sensitive to the inclusion of 

large metro regions in the sample (see below). Finally, we find that 𝑅𝐸𝐿𝑉𝐴𝑅2007 is a 

LASSO-selected predictor of employment change when considering network robustness 

especially to random elimination (and is barely below the cut-off for inclusion in the targeted 

case). It has a sign similar to that of other instances when an entropy-base variety measure is 

included in models along with network-based measures of relatedness (e.g., Rocchetta & 

Mina, 2019; Rocchetta et al., 2021; Tóth et al., 2022). That is, the measure based on explicit 

relatedness captures the conceptual core of related industries with shared local capability 

base. Further, as industrial classifications tend to classify activities that use similar 

technologies together, this coefficient may express the downside of relatedness during crisis 

in terms of shared supplier linkages. In sum, the LASSO selection models return a set of 

variables representing existing approaches to local economic structure in terms of industrial 

specialisation (𝑇𝐻𝐸𝐼𝐿2007), content (𝐸𝐶𝐼2007) and interdependencies (Ω), the last of which is 

a prominent predictor of employment outcomes during crisis. It should also be noted that, 

although only a limited number of conceptually relevant variables are included, 𝑅2 is almost 

doubled in both cases compared to the initial OLS regressions. 

 

We have tested the robustness of our findings to changes in key features of the analysis. In 

sum, these alternative specifications lent support to our main conclusions. First, the metro 

regions in our sample have an outstanding structural diversity in terms of industries, which 

makes them very different from the rest of the sample (see Figure 2). To test whether these 

urban areas drove our results, we reran the models presented in Tables 1 and 2 after 

excluding these regions (SI Table 4). The findings of the main models remained in place, 

except that economic complexity (𝐸𝐶𝐼2007) lost its statistical significance, likely because 

complex economic activities tend to concentrate in large cities (Balland et al., 2020). Second, 

the capacity to tolerate random and targeted removal of industries entails two extreme cases 
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for these local labour flow networks. Therefore, in a further test, we combined targeted and 

random removal (50% chance for either in a series of removals), leading to findings similar to 

those reported above (SI Table 3). 

 

Third, our dependent variable covers the period 2007-2012, in an aim to capture the early 

stage of the crisis and its immediate aftermath. In a set of robustness checks, we tested 

whether the results would hold for alternative periods. As the main employment effects of the 

crisis were expressed in 2009 for the vast majority of Swedish regions (SI Figure 2), we 

tested an alternative period in which employment change between 2007 and 2009 is 

considered (SI Table 5). This would correspond to a conservative estimate of the resistance 

stage during this particular crisis, and has been used in previous studies on the resilience of 

Swedish regions (e.g., Martynovich et al., 2023). With respect to the beginning of the period, 

2007 represents the last pre-crisis year in our main specifications. To test the robustness of 

this choice we reran our models using 2005 and 2006, respectively, as base years for 

calculating subsequent employment change. The results of these tests left our main findings 

in place. 

 

Finally, we tested whether spatial dependence was an issue in our modelling setting. A 

mapping of the residuals from the main models reported in Tables 1 and 2 indicates that our 

models overall perform reasonably well in predicting employment change in crisis (SI Figure 

3). Notable exceptions include the northern mining regions, which performed better in terms 

of resistance in employment compared with what we would expect based on their labour flow 

network structures, as well as some areas around the metro regions of Stockholm, 

Gothenburg and Malmö. The OLS models with LASSO selection tended to yield less extreme 

prediction errors for the mining regions in particular, also yielding a higher overall explained 

variance (see Adj. R2 values in Tables 1 and 2), but with more regions with higher prediction 

errors compared with the basic OLS models. Additionally, we formally tested the local 

clustering of high and low values (Getis-Ord General G) of labour flow network robustness, 

as neighbouring regions may have developed labour-flow interactions between industries that 

would effectively create structural dependencies across these networks despite our using 

functional labour market regions as spatial units. However, as we find no statistically 

significant support for such local clustering of labour flow network robustness to either 

random or targeted elimination (SI Table 6), spatial dependence should not be an issue in our 

models. 
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5. Conclusion 

 

In this paper we proposed an approach to engaging with which arrangements of 

interdependencies between local economic activities are conducive to resilience. This was 

done by drawing on advancements in evolutionary economic geography and the rich toolbox 

on network robustness developed in network science. The paper has thereby provided 

hitherto scarce systematic evidence, in the context of local labour markets of an entire 

national economy, on the link between local industrial network structure and regional 

economic resilience. Specifically, building on rich administrative data covering the universe 

of workers in Sweden, we stress-tested 72 local labour markets against the progressive 

hypothetical elimination of industries from their local inter-industry labour flow networks. 

 

The explorative part of the analysis indicates a substantial heterogeneity between the regional 

labour flow networks in terms of robustness to random disturbances as well as the targeted 

removal of their most connected industries. As these networks represent worker 

redeployment potentials within the context of local labour markets (Gianelle, 2014; O'Clery 

& Kinsella, 2022), this finding indicates that the same economic shock would isolate workers 

into disconnected segments of the labour market more easily in some regions than in others. 

Importantly, apart from a clear metropolitan premium, we find that this goes beyond being a 

matter of regional size, stressing instead that emergent local solutions to coordinating labour 

across economic activities yield structural strengths and vulnerabilities even among otherwise 

similar regions. We thereby advance previous studies based on nationwide relatedness (e.g., 

Sanchez-Moral et al., 2022) or a specific regional case (Gianelle, 2014). Given that the 

regional reallocation of workers is a prerequisite for smoothing the process of creative 

destruction at regional scale and lowering the adjustment costs for both individuals and 

society (Aghion et al., 2009), from a policy perspective this makes it imperative to have a 

clear understanding of the existing structure of local labour flows so that the fragmentation of 

redeployment potentials during crisis can be mitigated through targeted retraining 

programmes that counteract workers being isolated in disconnected segments of the labour 

market. 

 

Moreover, we find that regions where inter-industry labour flows constitute a network that 

fragments more slowly into disconnected components when facing a series of economic 

disturbances fared better in terms of employment during a grand recession. In such local 
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labour markets, workers are comparatively less likely to be isolated into a particular segment 

of related activities as an asymmetric crisis unfolds. The paper thereby advances the 

conceptualisation of regional economies as complex systems (Martin & Sunley, 2007) by 

showing that the self-organisation of local labour markets into labour flow networks of 

different structures is linked to regional economic performance during crisis. The findings 

from LASSO selection models also show that network robustness is a prominent predictor of 

employment change among several structural measures of local economic activities, 

indicating the importance of region-specific arrangements of labour redeployment potentials. 

Therefore, while structural features of regional economies are a well-established determinant 

of regional resilience (Martin & Sunley, 2020), there is more to this structure than the 

distribution of workers across economic activities, or relatedness based on national 

aggregates between them, would indicate. 

 

In highlighting the regionally varying structural features of labour redeployment potentials, 

our paper contributes to an emerging stream of empirical research exploring the role that 

local economic network structures play in regional economic resilience (e.g., Balland et al., 

2015; Moro et al., 2021; Tóth et al., 2022; Kitsos et al., 2023). Focusing on labour market 

realignments rather than output, our findings push the existing frontier by elaborating on the 

variation that exists in the self-organisation of regional economies as complex systems 

through inter-industry labour flows and how this makes for more or less resilient regions. 

 

However, our study has limitations, which correspond to still open questions in the literature. 

First, our proposed measure of robustness was derived from a static network defined by 

normalised labour flows prior to the crisis. The conceptual breadth of regional economic 

resilience includes the ability of regions to develop new growth paths and not only withstand 

a shock (Boschma, 2015), which implies a change of economic structures (Martin, 2012). 

While such changes could entail changes of industrial compositions as well as the intensity of 

labour flows between pairs of industries, within the confines of this paper it was not possible 

to take up the task of exploring the dynamics of network robustness and its relation to 

resilience. Hence, our results apply to the resistance and recovery dimensions of resilience in 

particular, rather than to the dimensions of renewal and reorientation. That being said, 

without knowing more about heterogeneity in the network robustness of local inter-industry 

labour flows in a static sense, we cannot discuss dynamic processes of change to any greater 

degree. Second, labour flows are only one instantiation of the interdependencies or forms of 
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relatedness between different industries. With our data we could not assess the degree of 

supply chain relatedness between different local industries, which may have led to omitted 

variable bias. Considering both labour flows and supply chain connections in the same 

framework, however, might resolve the conundrum around related variety; that is, whether it 

allows for the emergence of novel combinations of local capabilities during crisis, or 

facilitates shock propagation between related segments of the local economy. 
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Supplementary Information 

 

SI 1. Descriptive statistics and correlation matrix 

 

SI Table 1. Descriptive statistics and correlation matrix. 

Variable Obs. Mean Std. Dev. Minimum Maximum 

(1) log10 𝑅𝐸𝐺𝐸𝑀𝑃2007 72 4.196 0.683 3.004 6.047 

(2) 𝐻𝑈𝑀𝐶𝐴𝑃2007 72 0.246 0.055 0.157 0.412 

(3) 𝑃𝑂𝑃𝐷𝐸𝑁𝑆2007 72 22.385 22.385 0.241 145.413 

(4) Ω𝑅 72 0.414 0.022 0.361 0.451 

(5) Ω𝑇 72 0.287 0.064 0.171 0.432 

(6) 𝑅𝐸𝐿𝑉𝐴𝑅2007 72 2.701 0.394 1.742 3.327 

(7) 𝑈𝑁𝑅𝐸𝐿𝑉𝐴𝑅2007 72 3.218 0.175 2.675 3.507 

(8) 𝑇𝐻𝐸𝐼𝐿2007 72 3.396 5.945 -0.940 29.513 

(9) 𝐷𝐼𝑉2007 72 7.738 1.499 4.036 10.566 

(10) 𝑅𝑆𝑅2007 72 13.206 3.875 6.019 20.058 

(11) 𝐸𝐶𝐼2007 72 0.131 0.145 0.000 1.000 

Correlation matrix 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1) 1.000           

(2) 0.806 1.000          

(3) 0.775 0.640 1.000         

(4) 0.956 0.760 0.631 1.000        

(5) 0.950 0.809 0.703 0.940 1.000       

(6) 0.881 0.582 0.608 0.874 0.814 1.000      

(7) 0.219 0.482 0.163 0.243 0.324 -0.046 1.000     

(8) -0.451 -0.251 -0.345 -0.404 -0.391 -0.592 0.303 1.000    

(9) 0.198 0.464 0.172 0.210 0.303 -0.081 0.982 0.321 1.000   

(10) 0.972 0.761 0.688 0.963 0.928 0.924 0.186 -0.457 0.158 1.000  

(11) 0.683 0.683 0.814 0.558 0.646 0.424 0.356 -0.137 0.386 0.566 1.000 
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SI 2. Stepwise OLS model 

 

SI Table 2. OLS regression results with stepwise introduction of variables. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (5) (6) (7) (8) 

log10 𝑅𝐸𝐺𝐸𝑀𝑃2007 0.027***   0.002   -0.076* -0.027 

 (0.007)   (0.015)   (0.038) (0.026) 

𝑃𝑂𝑃𝐷𝐸𝑁𝑆2007  0.001***  0.000   0.001 0.000 

  (0.000)  (0.000)   (0.000) (0.000) 

𝐻𝑈𝑀𝐶𝐴𝑃2007   0.394*** 0.340**   0.355** 0.290* 

   (0.088) (0.150)   (0.146) (0.154) 

Ω𝑅     0.882***  1.996**  

     (0.219)  (0.903)  

Ω𝑇      0.316***  0.334 

      (0.075)  (0.252) 

Constant 0.861*** 0.964*** 0.879*** 0.880*** 0.661*** 0.885*** 0.369 0.917*** 

 (0.031) (0.006) (0.022) (0.043) (0.104) (0.025) (0.235) (0.051) 

# Region 72 72 72 72 72 72 72 72 

R2 0.167 0.120 0.225 0.228 0.189 0.199 0.280 0.248 

Adjusted R2 0.156 0.107 0.213 0.194 0.177 0.188 0.237 0.203 

F-Statistic 14.08*** 9.53*** 20.27*** 6.69*** 16.26*** 17.43*** 6.52*** 5.51*** 

Note: Standard errors in parentheses; * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. 

 

SI 3. LASSO and LASSO selection 

 

Hastie et al. (2019) discuss how to use LASSO for model selection and for inferential 

questions even with small samples. For linear models, LASSO solves an optimisation 

problem similar to the one the Least Square estimator does, except that it includes a 

penalisation parameter: 

 

𝛽̂ = argmin {
1

2𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽′)

𝑛

𝑖=1

+ 𝜆 ∑ 𝜔𝑗|𝛽𝑗|

𝑝

𝑗=1

} (1) 

 

where the first term refers to the least-square optimisation process to minimise the squared 

residuals and the second term introduces the penalty term. In the penalty term, 𝜆 ∈ {0, ∞) is 

the LASSO penalisation parameter and 𝜔𝑗 is a parameter-level weight. 
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When 𝜆 takes the value of 0 the estimation reduces back the Least Square optimisation. With 

increasing values of 𝜆, the degree of all the estimated coefficients diminishes towards 0. This 

diminishing arises because the penalty term adds up from the absolute values of 𝛽𝑗. At given 

penalty parameters, the optimal solution for some of the estimated coefficients is 0. When we 

use LASSO for variable selection, the covariates with an estimated coefficient of 0 can be 

excluded from the model. This process solves the high dimensionality of the model; in other 

words, it keeps only the covariates that have a reliable estimate despite collinearity and the 

relative smallness of the sample.  

 

In the main model we use Adaptive LASSO, a modification of the standard LASSO that aims 

to improve its performance when the number of predictor variables is large. The idea behind 

Adaptive LASSO is to introduce a data-driven weighting scheme for the penalty term that 

gives more weight to important predictors and less weight to less important ones, which leads 

to consistent variable selection. As a sensitivity check, we apply other frequently used 

methods to ensure the consistency of our estimation. As the number of excluded covariates 

can be dependent on the value of 𝜆, we use different versions of cross-validation (CV) to 

determine the optimal value of 𝜆 (Chetverikov et al., 2021). CV simulates the process of 

using split samples to optimise the most efficient out-of-sample predicators. The CV method 

identifies the optimal value of 𝜆 that minimises the out-of-sample mean squared error of the 

predictions and maximises the predictive power of the model.  

 

To reduce bias from overfitting highly correlating variables on low sample size, we run 

LASSO regressions to identify the set of variables with non-zero coefficients (Hastie et al., 

2009). We then fit an unrestricted OLS model on the selected set of features. The idea is to 

run the LASSO selection multiple times in tandem and use CV to refine the group of 

predictors to prevent overfitting; then the OLS we run with the selected set of variables 

should be free from overfitting bias (see Tables 1 and 2 in the main text). However, the 

variable selection depends on how we select the value of 𝜆 from SI Equation 1. 

 

The most common selection method is LASSO with 𝜆 selected by cross-validation (CV). 

With this method, we set a CV function 𝑓(𝜆) with which we want to minimise the estimated 

out-of-sample prediction error. In this case, the optimal 𝜆 minimises the CV function. For 

more details on 𝑓(𝜆) see Obuchi & Kabashima (2016). With CV, the number of covariates 
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tends to vary on a wide interval. Therefore, in the following specification (CV*), we set the 

minimum number of selected covariates to six. With CV*, LASSO selects the first six 

variables that minimise the out-of-sample error. Another method for reducing the number of 

variables is Adaptive LASSO, which aims to find parsimonious models that might better 

reflect the true model. Adaptive LASSO also uses CV solutions, but it is a more conservative 

method as it selects a model with fewer covariates. For another robustness check we repeated 

the same exercise, but picked the 𝜆 with the minimum Bayes Information Criterion (BIC). 

Finally, as a complementary method, we used Ridge regression. In Ridge regression, the 

penalisation parameter from SI Equation 1 is altered by changing 𝜆 ∑ 𝜔𝑗|𝛽𝑗|𝑝
𝑗=1  to the square 

of the magnitude of the coefficients, such that 𝜆 ∑ 𝜔𝑗
𝑝
𝑗=1 𝛽𝑗

2. Ridge regression helps to shrink 

the coefficients, but rarely excludes variables from the model. 

 

 

SI Figure 1. LASSO selection across different parametrisations. 

Note: Blue corresponds to random elimination, red to targeted. 

 

  



36 

SI 4. Defining the variables of local industrial structure 

 

In this subsection we provide the formal definition of variables that describe the local 

industrial structure, and which we use in the LASSO selection model. These variables are 

calculated for 2007 unless stated otherwise. 

 

First, the related variety of industries within a region 𝑟 (𝑅𝐸𝐿𝑉𝐴𝑅𝑟) is defined through 

entropy decomposition (e.g., Frenken et al., 2007) as the weighted average entropy of 

employment within industry groups. If every three-digit industry 𝑖 falls under an industry 

group2 𝑆𝑔, where 𝑔 = 1, … , 𝐺, then related variety is calculated as 

 

𝑅𝐸𝐿𝑉𝐴𝑅𝑟 = ∑ 𝑃𝑔𝐻𝑔

𝐺

𝑔=1

 (2) 

 

where 𝑃𝑔 is the aggregation of the three-digit employment shares: 

 

𝑃𝑔 = ∑ 𝑝𝑖

𝑖𝑒𝑆𝑔

 (3) 

 

The entropy within each industry group 𝑆𝑔 is 𝐻𝑔: 

 

𝐻𝑔 = ∑
𝑝𝑖

𝑃𝑔
log2 (

1
𝑝𝑖

𝑃𝑔
⁄

)

𝑖𝑒𝑆𝑔

 (4) 

 

Unrelated variety (𝑈𝑁𝑅𝐸𝐿𝑉𝐴𝑅𝑟) is measured as the entropy of the distribution of 

employment across industry groups in a region: 

 

𝑈𝑁𝑅𝐸𝐿𝑉𝐴𝑅𝑟 = ∑ 𝑃𝑔 log2 (
1

𝑃𝑔
)

𝐺

𝑔=1

 (5) 

 
 

2 The industry groups used for constructing alternative structural variables in this paper correspond with sections 

in the NACE Rev. 2 classification system, but are combined in some cases (e.g., ‘D - Electricity, gas, steam and 

air conditioning supply’ and ‘E - Water supply, sewerage, waste management and remediation activities’). 
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Second, we use the regional skill relatedness (𝑅𝑆𝑅𝑟) measure, introduced by Fitjar & 

Timmermans (2017). Essentially, this measure takes a skill-relatedness network, defined 

from inter-industry labour flows observed across the national economy, and then calculates 

the average relatedness of industries within a region while also considering the size of these 

industries in terms of employment. The measure can be considered an improved related 

variety measure as it considers ex post relatedness, as opposed to deriving it from a 

classification scheme. It is defined formally as  

 

𝑅𝑆𝑅𝑟 =
(∑ (

∑ 𝑆𝑅𝑖𝑗,𝑟𝑗

2
)𝑁

𝑖=1 √𝑞𝑖,𝑟) 𝑁𝑟⁄

(∑ √𝑞𝑖,𝑟
𝑁
𝑖=1 ) 𝑁𝑟⁄

 (6) 

 

Here, 𝑆𝑅𝑖𝑗,𝑟is the inter-industry labour flow measure between three-digit industries 𝑖 and 𝑗 ≠

𝑖 that is present in region 𝑟, as described in Subsection 3.1 in the main text, but derived from 

aggregate labour flows at the national level (hence following a revealed skill-relatedness 

approach). 𝑞𝑖,𝑟 is the employment share of a three-digit industry 𝑖 from the total employment 

in region 𝑟, while 𝑁𝑟 is the number of three-digit industries present in a region. A higher 

value of this indicator signals a higher employment-weighted average skill-relatedness within 

a local labour market; hence, higher worker redeployment potential between industries. 

While this measure is akin to our network robustness measure, from a structural perspective it 

considers only the immediate (one-step) neighbourhood of each industry, while our measure 

captures a more global structural feature of each labour flow network, at the local level.  

 

Third, we follow the approach and formulation by Grillitsch et al. (2021) in considering two 

additional measures of industry mix and agglomeration. The first is the absolute diversity 

(𝐷𝐼𝑉𝑟) of the regional employment mix using a reverse Herfindahl-Hirschman index: 

 

𝐷𝐼𝑉𝑟 =
1

∑ 𝑄𝑔,𝑟
2𝐺

𝑔=1

 (7) 

 

Here, 𝑄𝑔,𝑟 represents the employment share of industry group 𝑔 (𝑔 =  1, . . . , 𝐺) in the 

employment portfolio of region 𝑟. A higher value of absolute diversity indicates that regional 

employment is less concentrated across industries. 
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The second variable is a measure of relative regional specialisation (𝑇𝐻𝐸𝐼𝐿𝑟). Building on 

the Theil index, this measure aggregates industry-region-level specialisations (measured by a 

location quotient) to the regional level. Formally:  

 

𝑇𝐻𝐸𝐼𝐿𝑟 = ∑
𝑄𝑔,𝑟

𝑄𝑔
ln (

𝑄𝑔,𝑟

𝑄𝑔
)

𝐺

𝑔=1

 (8) 

 

Here, 𝑄𝑔,𝑟 is again the employment share of industry group 𝑔 (𝑔 =  1, . . . , 𝐺) in the 

employment portfolio of region 𝑟, while 𝑄𝑔 is the employment share of the same industry in 

the national employment. A higher value of relative regional specialisation would indicate 

that a region is specialised in its industry structure compared to other regions in the Swedish 

economy. 

 

Finally, we include economic complexity (𝐸𝐶𝐼𝑟) as a quality of the local capability base 

within the regions under analysis. It is widely established in the literature that complexity is a 

strong predictor of long-term economic growth (e.g., Hidalgo & Hausmann, 2009; Rigby et 

al., 2022). Here, we use the so-called Method of Reflections introduced by Hidalgo & 

Hausmann (2009). That is, we take a matrix with regions in its rows and industries in its 

columns (𝑀𝑟,𝑖), with each cell of the matrix showing whether region 𝑟 has a location quotient 

of employment above 1 in industry 𝑖. The next step is to calculate the diversity of regions and 

the ubiquity of industries: 

 

𝐷𝐼𝑉𝐸𝑅𝑆𝐼𝑇𝑌𝑟 = 𝐾𝑟,0 = ∑ 𝑀𝑟,𝑖

𝑖

 (9) 

𝑈𝐵𝐼𝑄𝑈𝐼𝑇𝑌𝑖 = 𝐾𝑖,0 = ∑ 𝑀𝑟,𝑖

𝑟

 (10) 

 

The economic complexity of regions (and industries) can then be obtained by sequentially 

combining these two measures in the following equations over 𝑛 iterations: 

 

𝐸𝐶𝐼𝑟 = 𝐾𝑟,𝑛 =
1

𝐾𝑟,0
∑ 𝑀𝑟,𝑖𝐾𝑖,𝑛−1

𝑖

 (11) 
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𝐼𝐶𝐼𝑖 = 𝐾𝑖,𝑛 =
1

𝐾𝑖,0
∑ 𝑀𝑟,𝑖

𝑟

𝐾𝑟,𝑛−1 (12) 

 

The final value of 𝐸𝐶𝐼𝑟 is normalised between 0 and 1, essentially creating a ranking between 

regions based on their industrial structure (Mealy et al., 2019), whereby a higher value 

corresponds to a more complex economic structure. For a more detailed description of the 

Method of Reflections, we refer the reader to Hidalgo & Hausmann (2009), or to Balland & 

Rigby (2017) for an application in the context of technological complexity within regions. 

 

SI 5. Robustness checks 

 

SI Table 3. Regression results with combined removal. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (6) 

 OLS (baseline) OLS LASSO inference 

(adaptive) 

LASSO selection OLS with 

LASSO selection 

log10 𝑅𝐸𝐺𝐸𝑀𝑃2007 -0.041 0.029 0.006   

 (0.030) (0.066) (0.069)   

𝑃𝑂𝑃𝐷𝐸𝑁𝑆2007 0.000 -0.000 -0.000   

 (0.000) (0.000) (0.000)   

𝐻𝑈𝑀𝐶𝐴𝑃2007 0.294* 0.067 0.073   

 (0.151) (0.169) (0.156)   

Ω𝐶 0.614 0.499 0.589 X 0.387*** 

 (0.375) (0.368) (0.407)  (0.127) 

𝑅𝐸𝐿𝑉𝐴𝑅2007  -0.034 -0.040   

  (0.042) (0.041)   

𝑈𝑁𝑅𝐸𝐿𝑉𝐴𝑅2007  -0.119 -0.114   

  (0.145) (0.156)   

𝑇𝐻𝐸𝐼𝐿2007  0.002* 0.002 X 0.003** 

  (0.001) (0.002)  (0.001) 

𝐷𝐼𝑉2007  0.014 0.011   

  (0.017) (0.019)   

𝑅𝑆𝑅2007  -0.003 0.001   

  (0.010) (0.010)   

𝐸𝐶𝐼2007  0.075 0.079 X 0.096** 

  (0.073) (0.066)  (0.038) 

Constant 0.858*** 1.061***   0.821*** 

 (0.045) (0.352)   (0.042) 

# Region 72 72 72 72 72 

R2 0.258 0.423   0.384 

Adjusted R2 0.213 0.328   0.357 

Mean VIF 9.43 29.57   1.61 

F-Statistic 5.81*** 4.47***   14.14*** 
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Note: Standard errors in parentheses; * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. 

 

SI Table 4. Regression results excluding metro regions. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) 

 OLS  

(baseline) 

OLS 

(baseline) 

OLS with LASSO 

selection 

OLS with LASSO 

selection 

log10 𝑅𝐸𝐺𝐸𝑀𝑃2007 -0.079* -0.014   

 (0.037) (0.027)   

𝑃𝑂𝑃𝐷𝐸𝑁𝑆2007 0.000 -0.000   

 (0.000) (0.000)   

𝐻𝑈𝑀𝐶𝐴𝑃2007 0.268 0.208   

 (0.145) (0.157)   

Ω𝑅 2.635**  1.713***  

 (0.910)  (0.481)  

Ω𝑇  0.394  0.246** 

  (0.251)  (0.111) 

𝑅𝐸𝐿𝑉𝐴𝑅2007   -0.066**  

   (0.026)  

𝑇𝐻𝐸𝐼𝐿2007   0.001* 0.002*** 

   (0.000) (0.000) 

𝐸𝐶𝐼2007   0.095 0.136 

   (0.026) (0.081) 

Constant 0.155 0.882*** 0.428*** 0.879*** 

 (0.241) (0.352) (0.141) (0.028) 

# Region 69 69 69 69 

R2 0.259 0.193 0.367 0.290 

Adjusted R2 0.213 0.143 0.327 0.258 

Mean VIF 11.67 6.47 3.77 1.74 

F-Statistic 5.62*** 3.85** 9.29*** 9.97*** 

Note: Standard errors in parentheses; * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. 
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SI Figure 2. Employment change across functional labour markets in Sweden (100% in 

2002). 
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SI Table 5. Results from OLS regression with LASSO selection for alternative periods. 

 Dependent variable: employment change 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 2007-2012 2006-2012 2005-2012 2007-2009 2006-2009 2005-2009 2007-2012 2006-2012 2005-2012 2007-2009 2006-2009 2005-2009 

Ω𝑅 1.725*** 1.740*** 0.754** 1.329*** 1.196*** 0.661***       

 (0.434) (0.512) (0.352) (0.302) (0.318) (0.231)       

Ω𝑇       0.280*** 0.328*** 0.393*** 0.217*** 0.175*** 0.258*** 

       (0.097) (0.107) (0.139) (0.068) (0.071) (0.095) 

𝑅𝐸𝐿𝑉𝐴𝑅 -0.066** -0.058*  -0.048*** -0.046***        

 (0.026) (0.031)  (0.018) (0.017)        

𝑇𝐻𝐸𝐼𝐿 0.002* 0.002*  0.000   0.003*** 0.003*** 0.004*** 0.001*** 0.001* 0.002*** 

 (0.001) (0.001)  (0.000)   (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) 

𝐸𝐶𝐼 0.092** 0.122*** 0.157*** 0.044* 0.057** 0.083** 0.091** 0.117** 0.135** 0.045 0.064** 0.080** 

 (0.035) (0.041) (0.055) (0.024) (0.026) (0.036) (0.040) (0.045) (0.058) (0.028) (0.030) (0.039) 

Constant 0.423*** 0.404*** 0.667*** 0.538*** 0.404*** 0.690*** 0.874*** 0.870*** 0.900*** 0.892*** 0.870*** 0.900*** 

 (0.125) (0.087) (0.141) (0.087) (0.087) (0.093) (0.026) (0.028) (0.035) (0.018) (0.028) (0.035) 

# Region 72 72 72 72 72 72 72 72 72 72 72 72 

R2 0.446 0.447 0.302 0.429 0.367 0.316 0.377 0.405 0.366 0.336 0.296 0.323 

Adjusted R2 0.413 0.414 0.282 0.395 0.339 0.296 0.350 0.379 0.338 0.307 0.265 0.293 

Mean VIF 3.69 3.87 1.50 3.69 3.73 1.50 1.67 1.62 1.70 1.67 1.62 1.70 

F-Statistic 13.47*** 13.53*** 14.96*** 12.57*** 13.16*** 15.95*** 13.72*** 15.45*** 13.10*** 11.48*** 9.53*** 10.79*** 

Note: Standard errors in parentheses; * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. The final models of Tables 1 and 2 in the main text are repeated 

here in Columns 1 and 7 for convenience. 𝑅𝐸𝐿𝑉𝐴𝑅, 𝑇𝐻𝐸𝐼𝐿 and 𝐸𝐶𝐼 are measured in the starting year of the corresponding period. Variables are 

included only if they pass the selection criterion based on repeating the LASSO selection procedure described at the end of Subsection 3.3 and in 

SI 3. 
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SI Table 6. Getis-Ord General G high/low 

clustering analysis results. 

 Ω𝑅 Ω𝑇 

Observed General G 0.000 0.000 

z-score 1.179 0.853 

p-value 0.238 0.393 

Note: * 𝑝 <  0.1; ** 𝑝 <  0.05; *** 𝑝 <  0.01. 
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SI Figure 3. Spatial distribution of regression residuals. 
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